2024 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT ASH PONDS A AND B WINYAH GENERATING STATION

by Santee Cooper Moncks Corner, South Carolina

January 31, 2025

Table	e of Contents	Page
1.	Annual Groundwater Monitoring Report Summary	1
2.	40 CFR §257.90 Applicability	1
	2.1 40 CFR § 257.90(a) and (c)	1
	2.2 40 CFR § 257.90(e) – Summary	2
	2.2.1 Status of the Groundwater Monitoring and Corrective Action Program	2
	2.2.2 Key Actions Completed	3
	2.2.3 Problems Encountered	4
	2.2.4 Actions to Resolve Problems	4
	2.2.5 Project Key Activities for Upcoming Year	4
	2.3 40 CFR § 257.90(e) – Information	5
	2.3.1 40 CFR § 257.90(e)(1)	5
	2.3.2 40 CFR § 257.90(e)(2)	5
	2.3.3 40 CFR § 257.90(e)(3)	5
	2.3.4 40 CFR § 257.90(e)(4)	5
	2.3.5 40 CFR § 257.90(e)(5)	6

Table No.	Title
1	Summary of Analytical Results
2	2024 Synoptic Water Levels for Groundwater Monitoring Wells
Figure No.	Title
1	Location of Ash Pond A & B Groundwater Monitoring Wells for CCR Compliance
2	Potentiometric Map February 2024
3	Potentiometric Map April 2024
4	Potentiometric Map July 2024
5	Potentiometric Man November 2024

Appendix A – Statistical Analyses

Appendix B – Laboratory Analytical Results

Appendix C – Well Construction Record

1. Annual Groundwater Monitoring Report Summary

The South Carolina Public Service Authority (Santee Cooper) has prepared this 2024 multiunit Annual Groundwater Monitoring Corrective Action Report for the Ash Ponds A and B at the Winyah Generating Station (WGS). This 2024 Annual Report was prepared to comply with the United States Environmental Protection Agency (EPA) Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals (CCR) from Electric Utilities, Title 40 Code of Federal Regulations (CFR) Part 257, Subpart D dated April 17, 2015 (CCR Rule), specifically subsection § 257.90(e)(1) through (6).

WGS Ash Ponds A and B are two CCR units within the same hydrogeologic system essentially located on an island surrounded by a permitted industrial cooling pond and an intake and discharge canal system. Accordingly, both CCR units are being addressed together in this multiunit Annual Report. In accordance with § 257.90(e)(6), an overview of the current status of groundwater monitoring and corrective action programs for the CCR units is provided below:

At the start of the current annual reporting period (January 1, 2024), Ash Ponds A and B continued groundwater monitoring with implementation of the corrective action program in accordance with § 257.98. For the February 2024 semi-annual monitoring event, statistically significant levels (SSLs) above the groundwater protection standard (GWPS) for arsenic were identified in monitoring wells WAP-9, WAP-17, WAP-18, WAP-19, and WAP-27; and for lithium in monitoring wells WAP-9, WAP-17, WAP-18, and WAP-19. For the July 2024 semi-annual monitoring event, SSLs above the GWPS for arsenic were identified in monitoring wells WAP-9, WAP-17, WAP-18, WAP-19, and WAP-27; and for lithium in monitoring wells WAP-9, WAP-17, WAP-18, and WAP-19.

On April 19, 2019, an assessment of corrective measures and an evaluation of the nature and extent of contamination was initiated per §257.95(g)(3) and it was completed on September 11, 2019. A public meeting was held on December 10, 2019 to discuss six remedial alternatives per § 257.96. A remedy was selected pursuant to § 257.97 and the remedy selection report was completed on March 31, 2022. Remedial activities were initiated in 2022 and are ongoing. At the end of the current annual reporting period (December 31, 2024), Ash Ponds A and B continue to implement the corrective action monitoring program.

To report on the activities conducted during the prior calendar year and document progress complying with the CCR Rule, the specific requirements listed in § 257.90(e)(1) through (5) are provided in the next section in bold/italic type followed by a short narrative stating how that specific requirement was met.

2. 40 CFR § 257.90 Applicability

2.1 40 CFR § 257.90(a) and (c)

All CCR landfills, CCR surface impoundments, and lateral expansions of CCR units are subject to the groundwater monitoring and corrective action requirements under § 257.90 through § 257.98.

Once a groundwater monitoring system and groundwater monitoring program has been established at the CCR unit as required by this subpart, the owner or operator must conduct groundwater monitoring and, if necessary, corrective action through the active life and post-closure care period of the CCR unit.

Ash Ponds A and B at WGS were surface impoundments historically used for wastewater treatment which are no longer receiving CCR or non-CCR waste streams and are undergoing closure by removal. They are subject to the groundwater monitoring and corrective action requirements set forth by the EPA in 40 CFR § 257.90 through § 257.98. This document satisfies the requirement under § 257.90(e) which requires the CCR Unit Owner/Operator to prepare an Annual Groundwater Monitoring and Corrective Action Report.

2.2 40 CFR § 257.90(e) - SUMMARY

Annual groundwater monitoring and corrective action report. For existing CCR landfills and existing CCR surface impoundments, no later than January 31, 2018, and annually thereafter, the owner or operator must prepare an annual groundwater monitoring and corrective action report. For the preceding calendar year, the annual report must document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year. For purposes of this section, the owner or operator has prepared the annual report when the report is placed in the facility's operating record as required by § 257.105(h)(1).

This Annual Report documents the activities completed in 2024 for WGS Ash Ponds A & B as required by the subject regulations. Groundwater sampling and analysis was conducted per the requirements of § 257.93, and the status of the groundwater monitoring program, set forth in § 257.95 and § 257.98, is provided in this report.

2.2.1 Status of the Groundwater Monitoring and Corrective Action Program

As required by § 257.93(h)(2), the initial statistical evaluation of the detected Appendix IV constituents identified SSLs exceeding GWPS, specifically arsenic, lithium, and molybdenum at both Ash Pond A and Ash Pond B. Therefore, an assessment of corrective measures and an evaluation of the nature & extent of contamination was initiated per §257.95(g)(3). Additional groundwater sampling during the nature & extent evaluation showed that the extent of the SSLs was confined to the uppermost aquifer on-site and did not extend north and east of the Industrial Cooling Pond. An Assessment of Corrective Measures report (ACM) was completed on September 11, 2019, and is available on the publicly available CCR website. A public meeting was held on December 10, 2019, to discuss the six alternatives presented in the ACM for a remedy per § 257.96(e).

In March 2022, the remedy was selected; therefore, the groundwater monitoring program transitioned from assessment to corrective action monitoring. Consistent with previous results, arsenic and lithium continue to be the only Appendix IV constituents present in groundwater at SSLs above the GWPS at Ash Ponds A & B. Of note, molybdenum, which was detected above the GWPS during prior sampling events, was not detected at an SSL in 2024 in either Ash Pond A or B. Similarly, lithium, which was detected above the GWPS during prior sampling events, was not detected at an SSL in 2024 in Ash Pond B.

The selected remedial alternative is closure by removal (CBR) of CCR and a layer of subsurface soil followed by monitored natural attenuation (MNA). The removed CCR is either beneficially used or disposed of in on-site landfills. This remedy eliminates the source through removal, thereby meeting the source control requirement stated in the CCR Rule. Over time, removing the source material and a layer of subsurface contaminated soils allows the concentrations of these constituents in downgradient groundwater to attenuate. Through the on-going beneficial use of reclaimed ponded ash, the amount of material that will need to be removed has been greatly reduced prior to selecting the final groundwater remedy. This

beneficial use program's success makes the option of CBR viable. The other component of the selected remedy will be to address the presence of arsenic, lithium, and molybdenum in the groundwater above the GWPSs. To address the limited and local CCR impacts, groundwater is being addressed through MNA, which is a viable remedial technology recognized by state and federal regulators that is applicable to inorganic compounds in groundwater. MNA occurs due to naturally occurring processes within the aquifer following source control or removal. MNA, in combination with source removal, is intended to reduce concentrations of arsenic, lithium, and molybdenum in groundwater at the Ash Pond A & B boundary, thereby attaining the groundwater protection standard.

The development of the corrective action groundwater monitoring program for MNA was completed by reevaluating the current groundwater sampling plan. This evaluation concluded that the assessment monitoring protocol currently being implemented was sufficient to meet the needs of the corrective action groundwater monitoring program at this time while source removal continues, which is consistent with § 257.98(a)(1)(i) and thus will continue to be implemented during the regularly scheduled semi-annual groundwater monitoring events. It is anticipated that the corrective action groundwater monitoring program will be reevaluated once source removal is complete in 2026 to ensure ongoing adequacy or make the necessary revisions.

2.2.2 Key Actions Completed

The following key actions were completed in 2024:

- Prepared 2023 Annual Report including:
 - The Annual Report was placed in the facility's operating record pursuant to § 257.105(h)(1);
 - Pursuant to § 257.106(h)(1), the notification was sent to the relevant State Director within 30 days of the Annual Report being placed in the facility's operating record [§ 257.106(d)];
 - Pursuant to § 257.107(h)(1), the Annual Report was posted to the CCR Website within 30 days of the Annual Report being placed in the facility's operating record [§ 257.107(d)].
- Collected and analyzed two (2) rounds of groundwater samples (February and July) in accordance
 with § 257.95(b) and § 257.95(d)(1) and recorded the concentrations in the facility's operating
 record as required by § 257.95(d)(1). Groundwater monitoring results are summarized in Table 1
 and laboratory analytical reports are provided in Appendix B.
- Completed statistical evaluation to determine statistically significant exceedances of GWPS for Appendix IV in accordance with § 257.93(h)(2) (Appendix A).
- Continued characterization of nature and extent [§ 257.95(g)(1)].
- Continued with improved potentiometric surface characterization of the uppermost aquifer given changing site conditions by completing sitewide synoptic water level measurements on an approximately quarterly basis to further evaluate temporal changes.
- Continued evaluation of turbidity, oxidation-reduction potential, and well screen submersion trends sitewide in wells and to identify wells to be redeveloped by a certified well driller to remove buildup of sediment fines and suspected biofouling on the well screens. A submersible camera was also used where applicable to investigate wells with unsubmerged screens prior to redevelopment. Plans to conduct redevelopment will be finalized in 2025 and reported in the 2025 Annual Report.
- Added WAP-27 to the compliance groundwater monitoring network as of the first sampling event of 2024.

 Installed monitoring well WAP-30 as part of the ongoing nature and extent characterization to establish vertical delineation and collected one sample during the second semiannual sampling event.

2.2.3 Problems Encountered

Arsenic concentrations above the groundwater protection standard were identified in the vertical extent well WAP-23 during the first semi-annual sampling event. The well was resampled for arsenic in May to verify the results. The arsenic concentrations have remained consistently elevated for all three WAP-23 samples collected in 2024. Of note, the WAP-23 arsenic concentrations were above those found in the nearby WAP-27, which monitors the surficial aguifer.

2.2.4 Actions to Resolve Problems

Due to the abnormality of the WAP-23 results, the well was evaluated to determine potential pathways that would lead to elevated arsenic concentrations. The well construction logs were reviewed and revealed that WAP-23 was installed without a surface casing. Therefore, a likely source is vertical migration from the surficial aquifer due to inability to adequately prevent infiltration from the surficial aquifer. In response, monitoring well WAP-30 was installed on May 22, 2024. Santee Cooper's staff Professional Geologist assisted in the well installation to ensure that a proper surface casing was established during WAP-30's installation. WAP-30 was sampled once in 2024 during the July semi-annual sampling event. Arsenic concentrations were non-detect.

2.2.5 Project Key Activities for Upcoming Year

Key activities to be completed in 2025 include the following:

- Prepare the 2024 annual report; place it in the record as required by § 257.105(h)(1); notify the Relevant State Director [§ 257.106(d)]; and post to the facility's publicly available website [§ 257.107(d)].
- Conduct semi-annual groundwater monitoring consistent with § 257.98(a)(1) and § 257.95(d)(1).
- Conduct semi-annual statistical analysis of corrective action monitoring analytical data to determine if SSLs of the detected Appendix IV constituents are present above GWPS.
- Continue ongoing characterization of nature and extent including installation of any additional
 wells if necessary to further define the contaminant plumes. [§ 257.95(g)(1)]. Continue
 comparison of WAP-23 and WAP-30 results to determine if vertical delineation of arsenic has
 been re-established.
- · Consider abandoning WAP-23 due to inadequate well construction.
- Continue sampling WAP-30 to verify the newly installed well successfully vertically delineates CCR constituents.
- Continue field implementation of the remedy including any associated additional groundwater monitoring activities such as additional geochemical analysis, as appropriate.
- Continue improving the potentiometric surface characterization of the uppermost aquifer given changing site conditions by expanding the number of locations for collecting surface water elevations from unlined ponds.
- Continue improving understanding of the dynamic hydraulic environment surrounding Ash Ponds A & B. Currently evaluating installing standpipes and/or completing a transducer study to improve surface water level and groundwater level data collection.

 Update the Selection of Remedy report to reflect changing hydrologic site conditions and use of adaptive site management.

2.3 40 CFR § 257.90(e) - INFORMATION

At a minimum, the annual groundwater monitoring and corrective action report must contain the following information, to the extent available:

2.3.1 40 CFR § 257.90(e)(1)

A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit;

As required by § 257.90(e)(1), a map showing the location of the CCR units and associated upgradient and downgradient monitoring wells for Ash Ponds A and B are presented as Figure 1.

2.3.2 40 CFR § 257.90(e)(2)

Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken;

Monitoring well WAP-30 was installed on May 22, 2024, to serve as a nature and extent well for vertical delineation of Ash Pond B. The record for this well is included in Appendix C.

2.3.3 40 CFR § 257.90(e)(3)

In addition to all the monitoring data obtained under § 257.90 through § 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs;

In accordance with § 257.95(b) and § 257.95(d)(1), two (2) independent samples from each background and downgradient monitoring well were collected and analyzed. A summary table including the sample names, dates of sample collection, reason for sample collection, and monitoring data obtained for the groundwater monitoring program for Ash Ponds A and B is presented in Table 1 of this report. In addition, and in accordance with § 257.95(d)(3), Table 1 includes the groundwater protection standards established under § 257.95(d)(2). Laboratory analytical results, along with field sampling forms, are also provided in Appendix B.

2.3.4 40 CFR § 257.90(e)(4)

A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels); and

The groundwater monitoring program transitioned from an assessment monitoring program to the corrective action monitoring program in 2022. A summary of the evolution of the monitoring programs is provided in this section.

As required by § 257.93(h) a statistical analysis of the Appendix III constituents was completed by January 15, 2018. Baseline analytical data collected from background monitoring wells WBW-1 and WAP-1 were combined to develop Upper Tolerance Limits (UTLs). The UTLs for each Appendix III constituent were

compared to the analytical results for the downgradient monitoring wells WAP-9, WAP-10, WAP-17, WAP-18, and WAP-19. Constituents with analytical results exceeding the UTLs were identified as statistically significant increases (SSIs) over background for the respective Appendix III constituent. This statistical analysis determined that statistically significant increases of boron, calcium, chloride, fluoride, pH, sulfate, and total dissolved solids were present downgradient of Ash Ponds A and B. An evaluation of alternate sources was initiated and completed on April 13, 2018, as provided in § 257.94(e)(2). A source causing the SSI over background levels other than the CCR unit was not identified at that time and an assessment monitoring program was initiated on July 16, 2018.

The assessment monitoring program has been established to meet the requirements of § 257.95. As required by § 257.93(h)(2), the statistical evaluation of the detected Appendix IV constituents determined a statistically significant exceedance of groundwater protection standards, specifically for arsenic, lithium, and molybdenum at Ash Ponds A & B. Therefore, per §257.95(g)(3), an assessment of corrective measures and an evaluation of the nature and extent of contamination was initiated on April 15, 2019. The ACM report was created considering the presence and distribution of arsenic, lithium, and molybdenum, Ash Ponds A and B's configuration and operational history, hydrogeologic setting, and the results of the evaluation of the nature and extent of contamination available at the time of the ACM.

In March 2022, the remedy was selected; therefore, the groundwater monitoring program transitioned from assessment to corrective action monitoring. The development of the corrective action groundwater monitoring program for MNA (a component of the selected remedy) was completed by reevaluating the current groundwater sampling plan. This evaluation concluded that the assessment monitoring protocol currently being implemented was sufficient to meet the needs of the corrective action groundwater monitoring program at this time, which is consistent with § 257.98(a)(1)(i) and thus will continue to be implemented during the regularly scheduled semi-annual groundwater monitoring events. It is anticipated that the corrective action groundwater monitoring program will be reevaluated around the time that source removal is complete in 2025 to ensure ongoing adequacy.

For the February 2024 semi-annual monitoring event, SSLs above the groundwater protection standard (GWPS) for arsenic were identified in monitoring wells WAP-9, WAP-17, WAP-18, WAP-19, and WAP-27; and for lithium in monitoring wells WAP-9, WAP-17, WAP-18, and WAP-19. For the July 2024 semi-annual monitoring event, SSLs above the GWPS for arsenic were identified in monitoring wells WAP-9, WAP-17, WAP-18, WAP-19, and WAP-27; and for lithium in monitoring wells WAP-9, WAP-17, WAP-18, and WAP-19. These are generally consistent with previous results.

2.3.5 40 CFR § 257.90(e)(5)

Other information required to be included in the annual report as specified in § 257.90 through § 257.98.

This Annual Report documents activities conducted to comply with Sections § 257.90 through § 257.98 of the CCR Rule.

Groundwater flow rate and direction are provided as Figures 2, 3, 4, and 5 for each synoptic water level event as specified in § 257.93(c).

The existing groundwater model was used in 2022 to evaluate how pond closure of WGS Ash Ponds A & B with the construction of the new landfill in the footprint of Ash Pond A may affect groundwater flow direction. The groundwater flow in the vicinity of Ash Ponds A & B and the Class 3 Landfill Area 2 has historically been radial with groundwater discharge into the surrounding surface water of the Industrial

Cooling Pond and the connecting cooling water intake and discharge canals. The model conditions were updated to simulate changes in groundwater flow following closure of Ash Pond A by removal of CCR and affected soils, backfilled with clean soil to provide the required separation between groundwater and the new landfill, and covered by the Class 3 Landfill Area 2 in 65 acres of the 90-acre footprint of Ash Pond A, with a liner meeting construction standards for a new CCR landfill. Modeled recharge was reduced from 6-inches per year to zero in the Class 3 Landfill area because by design rainfall and leachate were prevented from infiltrating into the subsurface due to the liner. Modeled recharge remained 6-inches per year around Ash Pond B and the remaining 25 acres of Ash Pond A because those areas will remain open and will be graded for drainage. The groundwater flow model predicted that as recharge to the surficial aquifer decreases over time as the ash pond is closed and the new Class 3 Landfill is constructed, groundwater flow will shift to the north-northwest. Therefore, piezometers are planned to be installed on the south side of the Class 3 Landfill Area 2 in 2025 adjacent Ash Pond A to monitor for these predicted changes. This will provide the ability to proactively address any potential changes to the groundwater monitoring network for ongoing compliance.

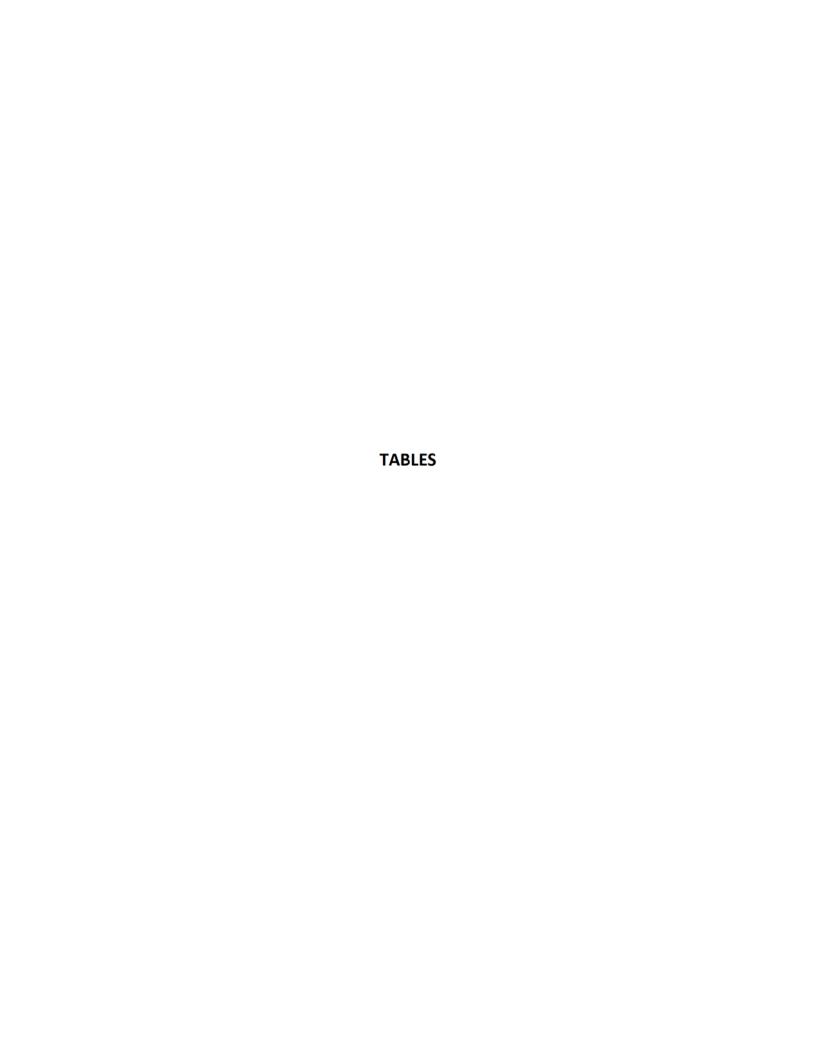


Table 1 - Summary of Analytical Results Winyah Generating Station Ash Ponds A and B Corrective Action Monitoring 2024

Laboratory Sample ID		Boron	Catclum	Chloride Fluoride Sulfa	luoride Sulfate	fate Total Dissolved	Hd.	Anthrony	Arsenic	Bannum	Beryillum C	direction Chro	unu	Coball	200	Fluoride Lesia Listiania	Marcous	Molyndanum	228	Kadhum 228	Radium 228/228	gelealur	Thailium	Groundwater	Groundwater		Conductivity	Temperature	Reduction	formula
-	Unit	UQAL EPA 8	mg/L EPA 66208 EI	mg/L EPA 300.0 EP	mg/L mg EPA 300.0 EP	Solids mg/L mg/L EPA SN 2540C	200	ug/L EPA 6026B	ugh B EPA 60208	ug/L EPA EF	ugil. EPA 6020B EP	ugil EPA 6020B EP	EPA 60208	ug/L mg/L EPA EPA 300.0	/L ug/L 00.0 EPA 60288	B BOTOD	ugil. EPA 7470	ug/L EPA 6010D	-	PCIII. EPA 904.8	Combined Calculation pCM. EPA 903.1 Med 1	ug/L d EPA 60208	ugil ugil EPA 6020B EPA 6820B			28	9	o	Potential mv SM2580	UL
	GWPS	1	1	1	899	1	1	25.0	183	2000	4.00	8.00	100	4.00	15.0	40.0	2.00	100	3 I	ı	6.00	80.08	2.00	1	1	I	1	E	ı	1.
	AF905@5 AG03721	30.4 7	7.5 9.2	11.6 40.	40.10 30.2 40.10 30.8	10.00	441	-6.0 -6.0 -2.0 -2.0	5.6 6.0	61.0 <0.5	2005	45.0	0.084	40.10	<1.0 <1.0	45.0	40.2	450	203 213	2.16	429	410.0	2 51.0	571	24.58	441	130	24.57	25.0	0.100
	A-BOB34 Agcd7e6	13.2 1	2.2 4.5	4.50	<0.10 10.9 <0.10 7.22	75.00	2 2 2 2	6.0	45.0 2	22.3 ±0.5 12.9 ±0.5	20.00	8 65 65	8 0 0 2	40,10	41,0	9.0	40.2	990	0.102	2.16	2.02	<10.0	41.0	7.16	24 70	2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	47.0	18.40	2 258	7.20 3.58 1.40 4.10
	AFROOM AGGG730	4470 3	345 200	206 <0.	<0.10 602 <0.10 580	1702	6.17	<5.0 <5.0 2	73.0 1	132 <0.5 110 <0.5	2 60	9 6	8 8	2 40.10	0,17	123 84.3	402	65.0	2.13	178		<10.0	0.0	888 10.96	10.16	2 2 2 2 2	2140	18.00	-30.0	0 0.850
AF00018 AF00010 AG03748 AG03740	AF00018 AF00019 AG03748 AG03740	3510 3 3710 3 4220 3 4190 4	333 10 328 10 315 24 309 24	100 <0.10 102 <0.10 240 <0.10 240 <0.10	-0.10 757 -0.10 725 -0.10 813 -0.10 813	1460 1500 1600 1600 1600	6.76	45.0 45.0 45.0 5.2	84.7 84.2 70.3 4 60.7	46.3 <0.5 46.1 <0.5 47.4 <0.5	60.5 60.5 60.5 60.5	20 8 8 8	40.5	00.00	0.12	76.9	<0.2 <0.2 <0.2 <0.2 <0.2	17.1 17.6 9.36	0.876 0.876 1.20	1.29 0.681 1.61 0.579	2.169 1.559 2.95 1.779	<10.0 <10.0 <10.0 <10.0 <10.0	410	10 88 8	20.87	5,78	2040	25.77	33.0	2.60 0.620
AF90620 AG03750	0.0	799 6 811 7	75.5 46	29.3 <0.10 46.4 <0.10	<0.10 132 <0.10 152	357.5 382.5	8.75 5.37 2	45.0	137 6	103 405	0 0	2 65.0	0.58	40,10 2 <0.10	41.0	80.9	40.2	158	0.965	2.42	3,369	<10.0	410	11.32	21,13	5.75	506	17.20	77.0	3.40
AF60621 AF98769 AG03751	- 9 -	4320 6	711 31	56.7 0.19	181	2 2891	6.34	<5.0 <5.0 3	124 6	77.7 40.5	2 05	- CS	12.1	0.19	41.0	1450 968 421	40.2 	13.4	2 206	1.76 2.63	2,302	410.0 1000	41.0	22.02	21.37	8 8 8 8 8 8 4	3080	18.03 22.13 22.20	88.0 -46.0 -141	3.20 16.2 7.50
AF90824 AG03755	7.6	1290 1	197 14	140 <0.10	10 163	962.5	6.83	45.0	500 7	73.8 <0.5	10.5	450	40.5	5 <0.10 5 <0.10	41.0	14.9	-0.2 -0.2 2	45.0	136	0.264	1.35	<10.0 <10.0	410	10.55	20.98	613 613 2	1210	27.32	-76,0	2 00
AF90906 AF90906 AF909786 AG03736	0 9 2 5 5	10200 6 10200 6 10200 6 10200 9	658 776 640 781 667 860 665 861	784 <0.10 786 <0.10 808 <0.10 809 <0.10	0.10 900 -0.10 900 -0.10 900 -0.10 907	12 1200 12 1200 13 1300 13 1300 14 1300 15 1300	6.57	-6.0 -6.0 -6.0 -6.0	000 H 000 H	286 <0.5 275 <0.5 276 <0.5 280 <0.5 280 <0.5 4	200 200 200 200 200 200 200	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	# 60 4 # 60 4	01.0, 01.0,	41.0	96.8 96.7 91.1 70.6 72.3	-0.2 -0.2 -0.2 -0.2	000	2 11 1.69 4.84 5.10	0.147	3.048 1.837 6.42 10.06	<10.0 <10.0 <10.0 <10.0	100000000000000000000000000000000000000	8.522 8.890 8.890	10.73	8.65	4010	15.92 22.38 24.55	-52.0	3.40 0.990
AG05554 AG05587	0.71	3150 1	102 60	60.6 <0.	40.10 3.15 40.10 <2.00	572.5 3 982.5 	624	<5.0 <5.0 2	5.6 4.0 5.0 2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3	388 408 44.7 40.5	9 0	3 650	20.00	40.10	2.5	1 650	40.2 40.2 2	650	137	137	2.74	4000	41.0 41.0	23.56	18.42	6.37	960	20.91	-51.0	0 0.630
AF60825 AF68750 AG03756	W 0 6	5270 4	402 301	01 0.48	8 513	1890	6.60	<5.0 5.5	000 775 1	201 <05	2 00 00	8 6 80	ı	40.5 0.34 40.5 0.48	41.0	341	<02 	450	2 2 12	163 3.43	3.27	<10.0 <10.0 2	c1.0	23.03	20 20 18 78 17 57	6.2 6.6	2530	20.67 23.21 27.16	-86.0 -82.0 -136	0 0.850 6.59 0.220 0 0.843
AF90626 AG03757	9/	134 6	67.9 60. 59.3 58	66.7 <0.	<0.10 11.0	345.0	7,53	46.0	\$ \$00	<50 (05 <50 (05 2	20.00	45.0	2 65	2 <0.10	2 <10	3 48	<0.2 <0.2 2	650	0.563	1.01	1.34	<10.0	41.0	256	21.21	7.10	476	18.54	-102	0 100 0.930
AF 60627 AG03758	1.0	23.7 6	66.6 10	10.0 <0.10 11.6 <0.10	10 0.01	233.8	7,12	<5.0 <5.0 2	<5.0 2 2 2 2 3	101 405	0.0	\$ 65.0	2 6 6	40,10 40,10	2 41,0	2 % 2 %	40.2 40.2 2	450	1.72	134	1,72	<10.0	410	7.66	19.44	7.02	410	24.72	28 28 28	00
AFBOSZB AFBOSZB AGGGTSB AGGGTSB	9000	20.1 20.1 20.6	16.7 11. 15.9 11. 18.9 0.6	11.1 40.10 11.0 40.10 9.80 40.1 10.0 4	10 37.0 10 37.5 1 38.0 1 37.2	100.0 188.75 11.25	4.85	<5.0 <5.0 <5.0 <5.0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	28.9 < 0.5 27.1 < 0.5 32.1 < 0.5 31.7 < 0.5	900 000	2 8 8 8 8 8 8	40.5	40.10 0.10 0.10	41.0 41.0 41.0 41.0	9 8 8 8	-0.2 -0.2 -0.2	460 450 450	0.853 0.741 0.683 1.27	6.48 0.0086 0.326 1.20	0.863 0.8095 1.01 2.47	<10.0 <10.0 <10.0 <10.0	0.17 0.17 0.00	8.60	1 I S S S S S S S S S S S S S S S S S S	4.65	1 1 1	25.46	18.0	0 0.040
AF40680 AG(8781	0.5	2230 1	116 14	148 0.10	8 62.0	715.0	6.13	5.7	122 1	60.5 60.5 60.5	2 005	\$ 650	40.5	0.35	61.0	8.68	<0.2 40.2 2 2	45.0	1.74	1.53	1,74	410.0	61,0	22.56	16.20	6.13	1100	20.45	-83.0	0 0.700
AG08765	CMANE 771624 AG03766 600 275 180 0.12 108 751.2 6.71 6.8 <5.0 926 405	000	175 180	60 012	400	0.000	8.74	0.0	0 030	200	8	9	3					100	2000	2000	A 696	400	610	25.70	ľ	17 68 671	1230	38.30	130	0

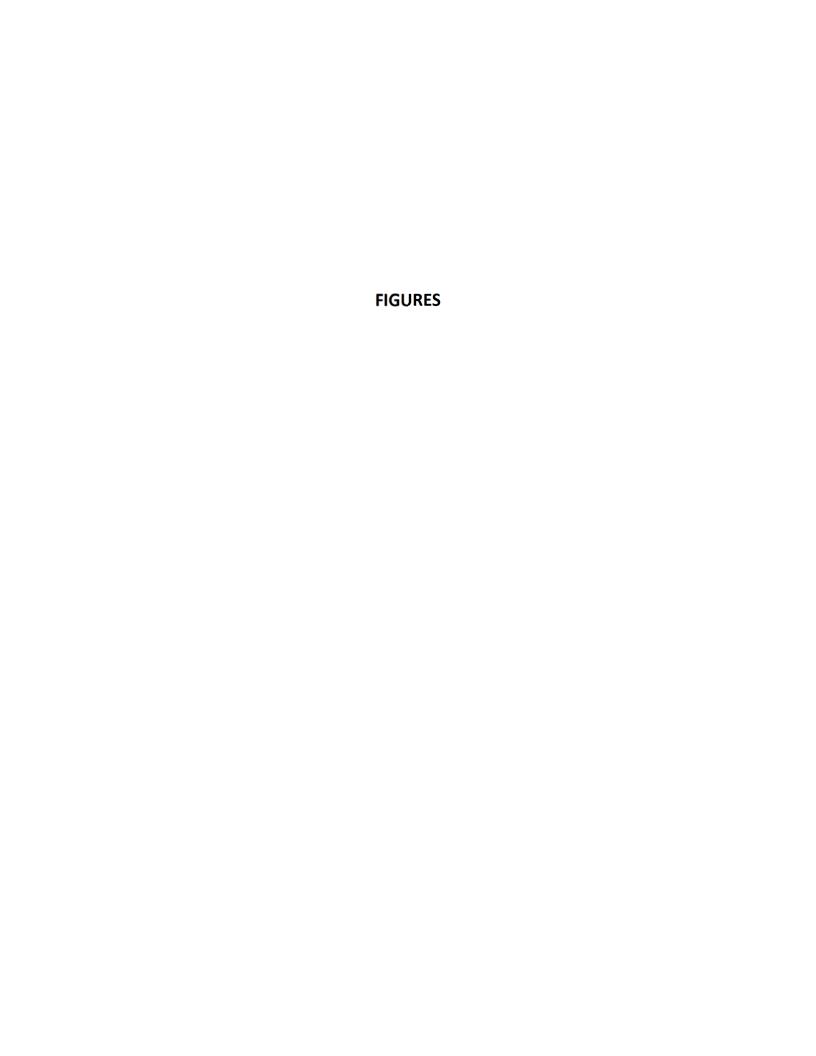
fileation stopology (Recignous), Connective Manuscare Assessment (CMA) Halare & Estera (NE), & Assessment Monthoring compliance with how been sampled to mark § 257 Ms and § 257 Ms.

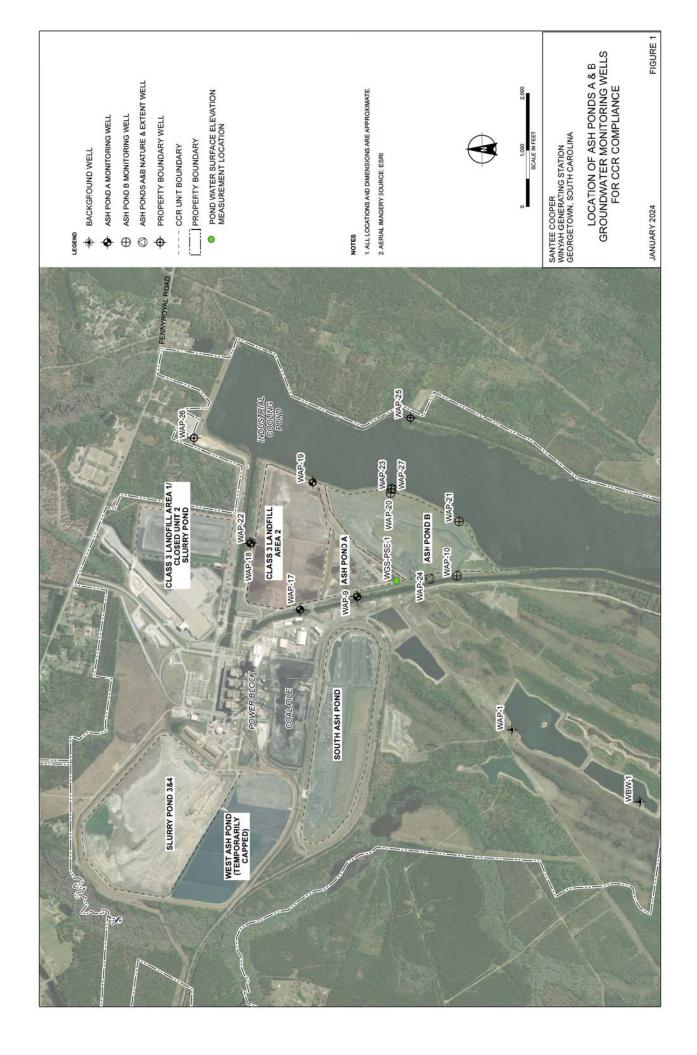
yes with abovedory delays, all groundwater samples were not analyzed by a single laboratory. This accounts for the majority of the reports

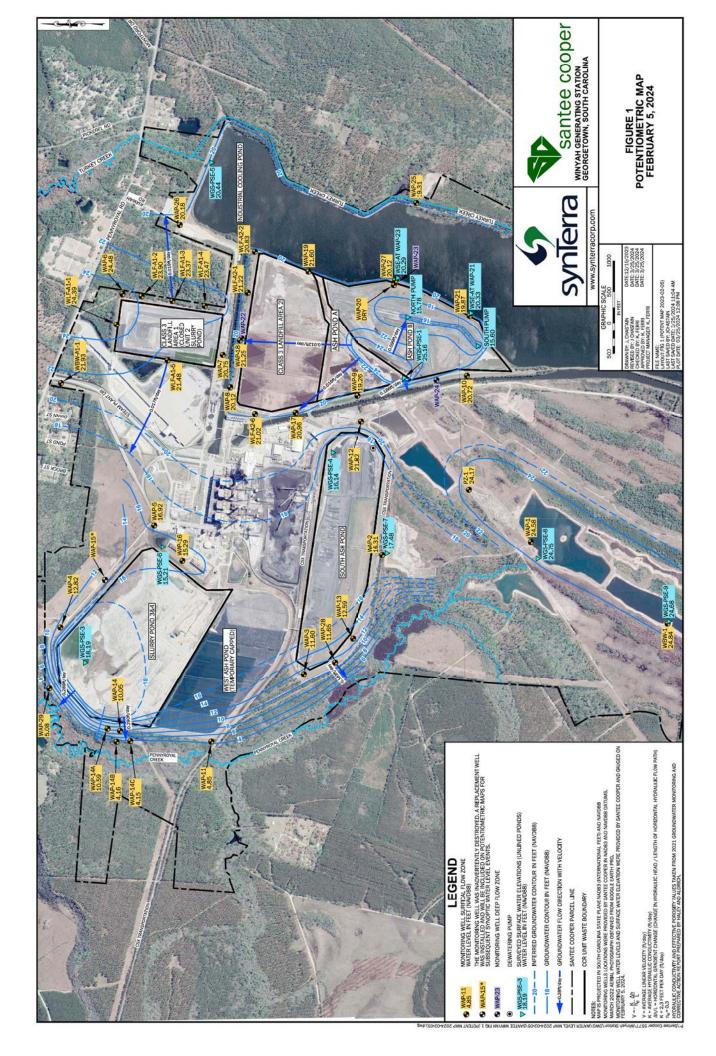
eans not collected. Mainly pertinant for duplicate samples.

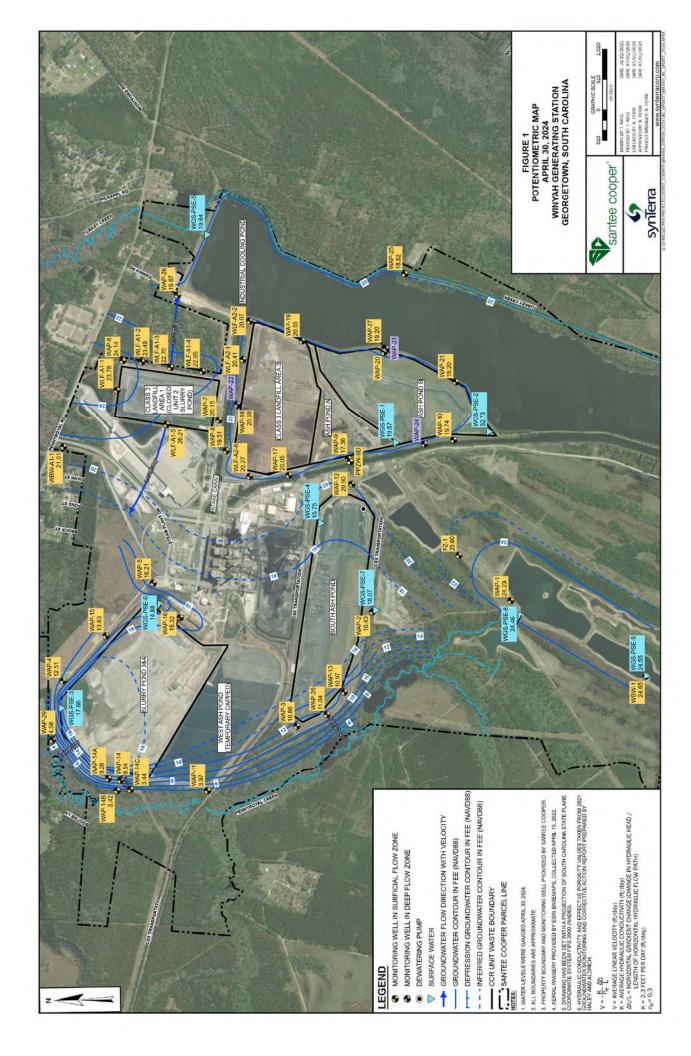
Table 2 **Cross Generating Station**

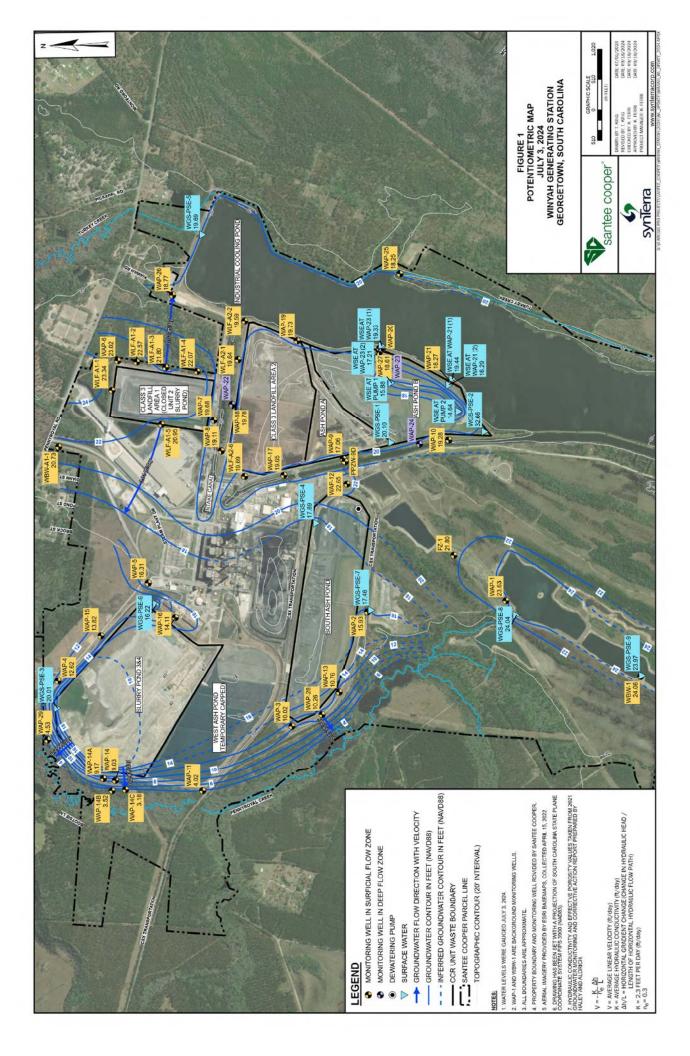
2024 Synoptic Water Levels for Groundwater Monitoring Wells

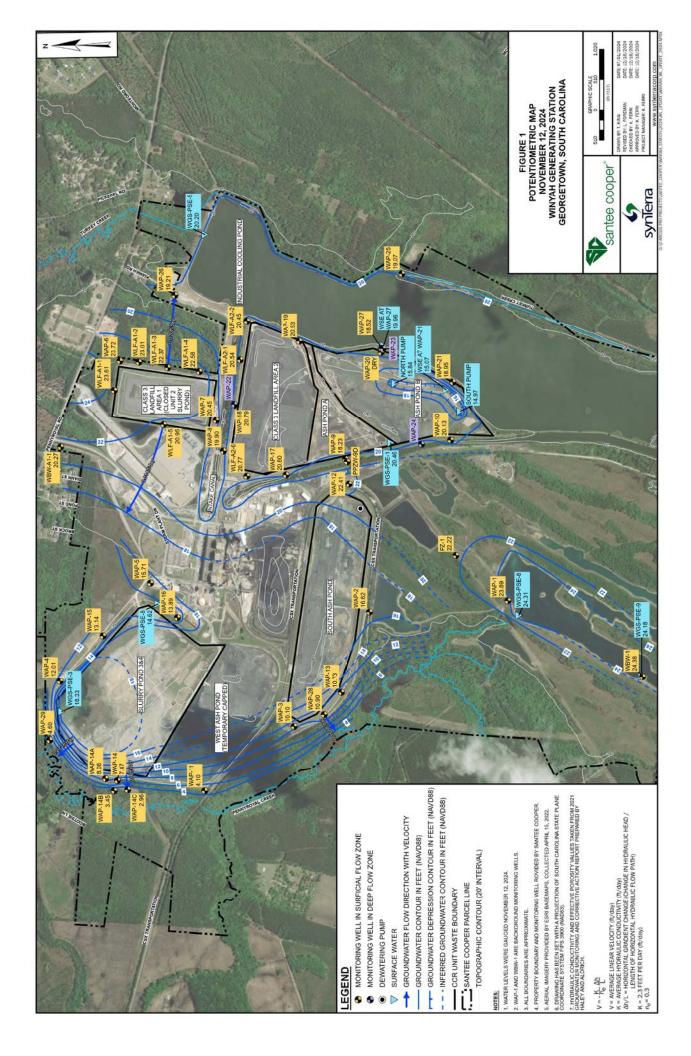

	202			ls for Grou					
	I	1st Event	- 1/3/2024		- 4/9/2024		- 6/3/2024	4th Event - 1	
Well Name	Top of Casing Elevation	Depth to Groundwater	GW Elevation	Depth to Groundwater	GW Elevation	Depth to Groundwater	GW Elevation	Depth to Groundwater	GW Elevation
weii isaine	(ft msl)	(ft btoc)	(ft msl)	(ft btoc)	(ft msl)	(ft btoc)	(ft msl)	(ft btoc)	(ft msl)
PM-1	83.24	7.75	75.49	8.14	83.24	8.50	74.74	9.13	74.11
CBW-1	85.80	8.50	77.30	9.12	85.80	10.41	75.39	11.47	74.33
CAP-1	82.70	8.50	74.20	6.61	82.70	7.66	75.04	8.40	74.30
CAP-2	89.70	15.10	74.60	15.91	89.70	16.98	72.72	17.69	72.01
CAP-3	91.49	14.70	76.79	15.47	91.49	16.54	74.95	17.34	74.15
CAP-4	91.77	15.05	76.72	15.77	91.77	16.97	74.80	17.81	73.96
CAP-5	91.78	14.60	77.18	15.26	91.78	17.66	74.12	18.67	73.11
CAP-6	91.82	14.65	77.17	15.89	91.82	18.05	73.77	18.94	72.88
CAP-7	91.64	14.75	76.89	15.19	91.64	17.57	74.07	18.52	73.12
CAP-8	91.61	15.95	75.66	16.67	91.61	18.30	73.31	18.98	72.63
CAP-9	91.59	14.35	77.24	14.62	91.59	17.82	73.77	18.73	72.86
CAP-10	95.68	20.25	75.43	21.12	95.68	22.40	73.28	13.11	82.57
CAP-11	95.55	19.20	76.35	18.72	95.55	20.71	74.84	21.31	74.24
CAP-12	98.33	22.25	76.08	23.72	98.33	24.13	74.20	24.73	73.60
CAP-13	80.77	4.35	76.42	4.83	80.77	7.65	73.12	8.76	72.01
CAP-14	80.77	4.15	76.62	4.78	80.77	7.77	73.00	8.93	71.84
CCMLF-1	80.86	3.45	77.41	4.00	80.86	7.11	73.75	7.95	72.91
CCMLF-1D	80.65	3.20	77.45	3.74	80.65	6.89	73.76	7.74	72.91
CCMLF-2	84.08	6.75	77.33	7.43	84.08	11.53	72.55	12.74	71.34
POZ-3	82.61	4.30	78.31	4.98	82.61	7.80	74.81	8.98	73.63
POZ-3	82.73	3.95	78.78	5.07	82.73	8.34	74.81	9.35	73.38
POZ-5D	82.49	4.15	78.34	5.21	82.49	8.56	73.93	9.57	72.92
POZ-6	83.84	5.80	78.04	6.44	83.84	9.86	73.98	10.93	72.91
		3.95	78.04	4.77	82.02	7.44	74.58	8.29	
POZ-7 POZ-8	82.02 83.13	4.80	78.07	5.84	82.02	9.12	74.58	10.15	73.73 72.98
7,750,000,000,000	83.13	75000	78.33			8.70	75.06	9,68	74.08
CLF1B-1	82.04	6.00 4.35	77.69	6.66 5.05	83.76 82.04	7.18	75.06	9.68 8.19	73.85
CLF1B-2 CLF1B-3	82.04 82.75	3.95	77.69		82.04 82.75	7.18 8.18	_	9.18	
				5.82			74.57		73.57
CLF1B-4	82.74	3.85	78.89	5.80	82.74	8,55	74.19	9.59	73.15
CLF1B-5	81.09	3.40	77.69	4.23	81.09	7.32	73.77	8.31	72.78
CLF1B-5D	80.93	3.85	77.08	4.55	80.93	7.72	73.21	8.82	72.11
CCMAP-1	80.21	4.50	75.71	5.10	80.21	7.61	72.60	8.45	71.76
CCMAP-2	81.24	6.50	74.74	7.14	81.24	8.02	73.22	8.55	72.69
CCMAP-3	81.91	6.15	75.76	6.92	81.91	8.58	73.33	8.95	72.96
CCMAP-4	81.83	4.45	77.38	5.19	81.83	7.64	74.19	8,60	73.23
CCMAP-5	83.71	6.15	77.56	6.93	83.71	9.33	74.38	10.29	73.42
CCMAP-6	84.41	7.90	76.51	8.45	84.41	11.61	72.80	12.57	71.84
CCMAP-7	81.57	7.05	74.52	7.59	81.57	8.21	73.36	8.93	72.64
CCMAP-8	82.89	6.40	76.49	6.99	82.89	9.80	73.09	10.72	72.17
CCMAP-9	82.51	6.00	76.51	6.62	82.51	9.75	72.76	10.80	71.71
CCMAP-10	81.80	5.55	76.25	6.08	81.80	9.10	72.70	10.01	71.79
CCMAP-11	80.29	4.00	76.29	5.01	80.29	8.11	72.18	9.10	71.19
CCMAP-12	80.58	4.75	75.83	5.71	80.58	7.42	73.16	8.00	72.58
CCMAP-13	80.11	4.55	75.56	5.36	80.11	6.93	73.18	7.60	72.51
CCMAP-14	78.64	4.40	74.24	4.71	78.64	5.43	73.21	6.04	72.60
CGYP-1	91.89	15.95	75.94	19.69	91.89	17.56	74.33	17.98	73.91
CGYP-2	84.88	8.50	76.38	13.20	84.88	10.56	74.32	11.01	73.87
CGYP-3	83.95	6.95	77.00	9.41	83.95	9.37	74.58	9.84	74.11
CGYP-4	83.49	6.65	76.84	8.27	83.49	8.20	75.29	8.60	74.89
CGYP-5	84.12	7.90	76.22	9.09	84.12	8.14	75.98	8.35	75.77
CGYP-6	83.93	7.15	76.08	- 50	19	9.46	74.47	9.91	74.02
CGYP-7	85.37	9.20	76.17	13.10	85.37	10.97	74.40	11.42	73.95
CGSPZ-1	83.31	7.45	75.86	8.64	83.31	8.61	74.70	9.22	74.09
CGSPZ-2	82.56	6.70	75.86	9.38	82.56	8.29	74.27	8.55	74.01
CGSPZ-3	82.85	4.75	78.10	6.19	82.85	9.91	72.94	10.51	72.34
CGSPZ-4	81.28	3.80	77.48	4.82	81.28	7.68	73.60	8.73	72.55
CGSPZ-5	80.56	2.75	77.81	5.39	80.56	8.27	72.29	9.62	70.94
CCMGP-1	84.30	8.15	76.15	13.43	84.30	10.07	74.23	10.53	73.77
CCMGP-2	96.73	20.05	76.68	24.20	96.73	22.54	74.19	22.97	73.76
CCMGP-3	84.44	8.45	75.99	12.38	84.44	10.54	73.90	10.97	73.47
CCMGP-4	84.82	8.50	76.32	12.78	84.82	10.31	74.51	10.79	74.03
CCMGP-5	79.91	4.70	75.21	6.06	79.91	6.56	73.35	7.08	72.83
CGS-PSE-1	-	-	75.07	- 5	75.27		74.97	-	74.80
CGS-PSE-2		28	81.99		80.27	-	79.30		76.85
CGS-PSE-3	-	-	79.52	- 8	76.88		76.49		76.52
CGS-PSE-4	2	12	76.37	25	75.64	120	74.88	9	75.43
CGS-PSE-5	-	-	78.50		77.28		76.57		76.49
CGS-PSE-6	2	-	74.71		74.58		74.46		74.21
CGS-PSE-7		-	83.35	- 50	85.75		85.30		86.29
CGYPSW-1-WSE	-	-	75.13	-0	75.16	-	74.88		74.93
CGYPSW-2-WSE		-	75.15	- 2	75.18	-	75.02		75.01
CGYPSW-3-WSE	-	- 12	75.49	20	75.37	120	75.45		75.26
CGYPSW-4-WSE	-		75.83	- 2	75.69	- 2	75.76		75.75
CGYPSW-6-WSE	2	<u> </u>	75.12	-	75.17		74.85	-	74.70
CGYPSW-7-WSE	-	-	75.15	-	75.20	-	74.83		74.76
CGYPSW-8-WSE	-	-	75.14	- 20	75.23	-	74.86	-	74.79
GMPSW-WET-1SWE	- 2	-	75.98	2	75.81	-	74.35	-	74.24
GMPSW-WET-1SWE	-		75.55	- 2	75.34	- 0	74.49		74.50
GMPSW-WE1-23WE GMPSW-CPD-1SWE	-	-	78.47		77.62		77.38	- :	77.74
	-	- :	76.80		76.45			-	
STAFF GAUGE STAFF GAUGE		- :				-		-:-	
			76.63	50	76.48	1,70	•	- 6	


Notes:


^{1.} Additional groundwater monitoring wells used for development of potentiometric maps. These wells monitor groundwater constituent concentrations under the SCDES NPDES Permit #SC0037401 and are not used for CCR constituent concentrations.


^{2.} Depth to Groundwater is measured below the top of casing (btoc) to the water surface. The Top of Casing Elevation and GW Elevation are shown relative to the mean sea level (msl).


^{3.} Pond surface elevations (PSE) and staff gauge elevations were collected to aid in the potentiometric surface interpretation elevation.





HALEY & ALDRICH, INC. 400 Augusta Street Suite 100 Greenville, SC 29601 864.214.8750

TECHNICAL MEMORANDUM

July 15, 2024

File No. 132892-100-005-02

SUBJECT: Statistical Evaluation of the February 2024 Semiannual Corrective Action Groundwater

Monitoring Data, Winyah Generating Station, Ash Pond A

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §257.93, §257.95, and §257.98 (Rule), this memorandum summarizes the statistical evaluation of the groundwater analytical results obtained from the February 2024 semiannual corrective action monitoring event for Winyah Generating Station (WGS) Ash Pond A. Data for this groundwater sampling event were validated on April 16, 2024, by Santee Cooper.

BACKGROUND

All coal combustion residual (CCR) and non-CCR wastewater inflows to the WGS Ash Pond A ceased prior to the regulatory deadline of April 11, 2021. The unit has completed closure-by-removal of the CCR as the first step in groundwater remediation as outlined in the Remedy Selection Report dated March 30, 2022. During previous groundwater sampling events, assessment monitoring identified the presence of arsenic, lithium, and molybdenum in one or more downgradient wells at a statistically significant level (SSL) above the Groundwater Protection Standards (GWPS).

Recent analytical testing results were evaluated to determine if SSLs exist above the GWPS of Appendix IV groundwater monitoring constituents. Using interwell evaluations, data from the semiannual sampling event for downgradient monitoring wells were compared to the GWPS established from background well data.

STATISTICAL EVALUATION

The Rule provides four specific options to statistically evaluate whether water quality downgradient of the CCR Unit (§257.93(f) (1-4)) represents a SSL of Appendix IV parameters above the GWPS. The selected statistical method used for these evaluations is the tolerance limit (TL) as certified by Haley & Aldrich, Inc. on October 14, 2017.

An interwell evaluation was used for statistical analysis, which compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. The TL method was used to evaluate potential SSLs above GWPS. The GWPS for each of the Appendix IV constituents has been set equal to the highest value of the maximum contaminant level, regional screening level (RSL), or site background concentration. Compliance well data from the most recent groundwater sampling event were compared to the corresponding GWPS to determine if a SSL existed. Statistical analysis results are presented in Table 1.

South Carolina Public Service Authority (Santee Cooper) July 15, 2024 Page 2

As part of the TL procedure, a concentration limit for each constituent is established from the distribution of the background data with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is called the upper tolerance limit (UTL). Depending on the assumed distribution of background data, parametric or non-parametric procedures were used to develop the UTL. Parametric procedures use assumed distributions of the sample background data to development the limits, whereas non-parametric limits use order statistics or bootstrap methods. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

If an Appendix IV constituent concentration from the event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent was used to evaluate the presence of a SSL. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence.

After testing for outliers, the UTLs were calculated from the background dataset to evaluate whether removal of data was necessary based on sampling or measurement discrepancies. Both visual and statistical outlier tests for the background data were performed. A visual inspection of the data was performed using distribution plots for the downgradient sample data. Based on our review, no sample data were identified as outliers that warranted removal from the dataset.

The background well (WAP-1 and WBW-1) analytical results from previous events were combined to calculate the UTL for each detected Appendix IV constituent. Variability and distribution of the pooled dataset were reviewed to establish the method for UTL calculation.

Per the document Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009 (the Unified Guidance), background concentrations were based on statistical evaluation of analytical results collected through July 2023 and updated in the Chemstat output. The background dataset will be updated in Table 1 again after four additional data points are collected (second semiannual event of 2025) in accordance with the Unified Guidance.

TREND ANALYSIS

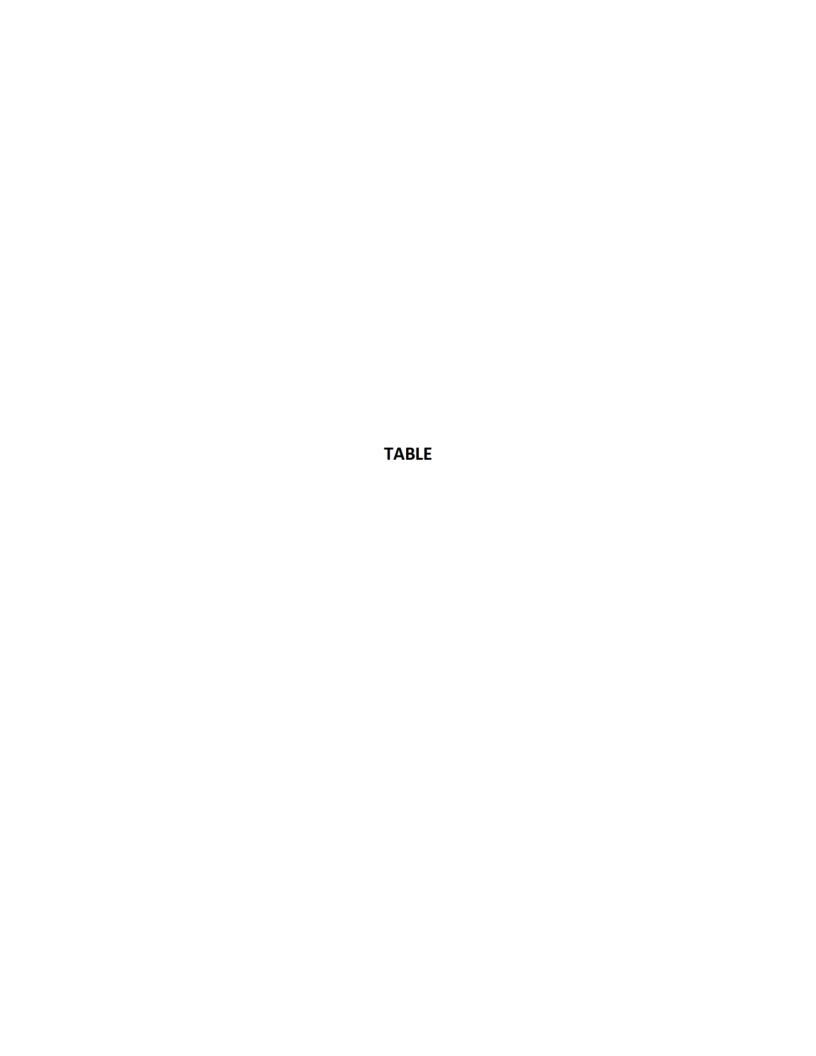
Mann-Kendall trend analyses were performed on datasets of sufficient sample size. Results of the trend analysis are included on Table 1. In summary, approximately 88 percent of trends analyzed are identified as stable or decreasing for the compliance wells for Appendix IV constituents. It is important to note that increasing trends are not part of the comparison criteria for triggering a SSL. Trend analysis will continue to be used to monitor and evaluate concentrations in the context of overall site conditions.

¹ Visual and statistical outlier tests for background data were performed using Chemstat 6.3.0.0 and U.S. Environmental Protection Agency's ProUCL 5.1 software.

South Carolina Public Service Authority (Santee Cooper) July 15, 2024 Page 3

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

As stated, Appendix IV constituent detections from downgradient well samples were compared to their respective GWPS (Table 1). Based on previous compliance sampling data and statistical evaluations, interwell comparisons were used. No outliers were removed. Consistent with previous results, arsenic and lithium remain the only Appendix IV constituents present in groundwater at SSLs above GWPS, and groundwater monitoring will continue.


- Arsenic SSLs at WAP-9, WAP-17, WAP-18, and WAP-19
- Lithium SSLs at WAP-9, WAP-17, WAP-18, and WAP-19

Molybdenum, which was previously identified as a SSL, was not identified in the February 2024 event after using a LCL comparison for WAP-18. While landfill construction was completed in December 2022, Ash Pond A closure activities are not yet complete. As closure activities continue in the footprint of Ash Pond A, downgradient groundwater conditions may remain in a state of flux, contributing to potential short-term fluctuations in some of the concentrations of Appendix IV SSLs. The fluctuations are expected to subside once aquifer equilibrium conditions are restored.

Enclosures:

Table 1 – WGS Ash Pond A February 2024 Semiannual Corrective Action Monitoring Data

	ű	2222	1111	222	0 2 2 2	1711	1177	1221	2 2 2 2	2222	1111	2 2 2 2	2.2.2	2222	2222	2 2 2 2
	Residence above Background at Individual Well	2 2 2 3	****	* * * *	* * * *	4 4 4 4	4 4 6 4	* 4 # #	(a) (b) (b) (b)		****	4.4.4		2 2 2 4	4 4 4 4	4 4 4 4
	GWPS (Nigher of MCL/RS, or Biciground Lines)	800	000	2	9070	100	10	8000	9	Gers	0000	2000	10	5	50	2000
tealpris	98 MO/R			• 2 2 2							***					2222
Inter-well	e Tolerano Lines	50018	8000	p008	50004	10003	9001	1001	1140	gtorg	21015	8,0002	9901	250	0001	1000
	MO NO DI		0.000 0.000 0.000 0.000					50000					WG00			
	Desect?	a a a a		6500	0222	222	2223	F 8(+)-	# # # # *	7797		2 2 2 2	2		2227	2222
	Pebruary 2016 Concentration	\$000 \$000 \$000	0.000 0.000 0.007 0.000	0.132 0.086 0.082 0.087	\$0000 \$0000 \$0000	\$0000 \$0000 \$0000	SS	0,000 0,000 0,000 0,000 0,000 0,000	9000	1000	9000 9000 9000	000000 000000 0000000	0.000 0.007 0.008 0.008	4.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	9000	1000 1000 1000
	Distribution	3	Konsk Konsk opptentijk (to generalite corporation	Nancted in	3	2	Manufacture of the	Tip man and and	Attenuation (c)	Name and wo	Name Name Name Name Name Name Name Name	5	Administration of the Miles	Name of the	5:	*
	Zinger Transition	*****	Message Messag	States States States Secretary States Secretary	11111	23333	*******	Increasing increasing in the property of the p	2 2 5 States	12221	Decreasing Stable Stable Stable	221112	Market States States States	Stable Socreasing Stable Socreasing Socreasing		2 2 2 2 2 2
	Outle	55555	52222	22222	55555	11111	255555	222522		13551	111111	155555	553323	22222	55555	55555
	O Comments	100 A 24 A		75 th 10 th	111111	111111	111111	22232	22122	3 3 3 3 3 3	111712	111111	An Market 1971		***	22222
	Number of Non-Detection Exceedances			00000			000000	00000	00000	00-000			00000		00-000	00000
	niber of Detection Exceedences	00000		000000			00000	-0000n	00000	00000	00882	00000	000730	0 4 5 - 0 0		00000
	(17N)	*****	zz>>>	****	*****	*****	*****	>zzzz>	*****	*****	zz>>>	*****	z z z >> z	z > > z z	*****	*****
	1 1 1	111111	111111	55555	111111	111111	55555	*****	55555	111111	55555	55555	*****	55555	55555	55555
	CCR MOJ/88	9000 9000 9000 9000 9000 9000	55555		888888888888888888888888888888888888888	0000 0000 0000 0000 0000 0000	222233	9000		0.015 0.015 0.015 0.015 0.015	333333	0,002 0,002 0,002 0,002 0,002	333333	****	8888888	0,002 0,002 0,002 0,002 0,002
	Coefficient of Variance	0.781 0.783 0.423 0.408 0.425 0.425	0.2001 0.2003 0.5000 0.1251 0.2053	0.6344 0.6602 0.3361 0.3366 0.3079 0.3611		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0.0 0.10 1.126 OR 1.164 OR	1.468 0.53 0.072 0.8543 1.981	0.1009 0.1009 0.02122 0.4286 0.7899 0.6251	1198 140 2902 1108 1108	0.198 0.2779 0.3981 0.7159 0.6095 0.8624	0 0 0 0 0	0.8305 0.2234 0.6079 1.151 1.907 0.4883	0.508 0.407 0.5088 0.4724 0.4724	0.4347 0.3874 0.7539 0.4219 0.4897	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	Standard Deviation	0.000428 0.000428 0.000457 0.000450 0.000450 0.000450	0.0000003 0.00130 0.0107 0.0402 0.0402	0.01171 0.02728 0.02788 0.0168 0.0169		965 200000 905 2000000 905 2000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.001799 0.001799 0.00001997 0.000001891 0.00000189	0.00101 0.00101 0.00111 0.00111 0.728	0.002722 0.002722 0.0022186 0.0022183	0.001791 0.001791 0.002079 0.00425 0.1918 0.1346	0000000423	0.00207 0.002033 0.008233 0.00876 0.6778	888389	0.004831 0.004832 0.00483 0.00483 0.005235 0.005235	50000000
	Variance	0,00002105 0,00002188 0,0000231 0,0000231 0,0000235 0,0000235	8.5714-07 0.00200159 0.01247 0.0159 0.0159	0.000137 0.000544 0.0005372 0.0002657 0.00027905	000000	0 6.0977-07 0 1.906-09	0 0.000000075 3.1896-21 3.3886-21	0.00000047 1.9474-07 0.00000047 0.00000047	1.3228-18 0.0000008-45 0.000009-45 0.00073-8 0.5312 0.00000	0.000007407 0.00000941 0.00000932 0.000009339 0.000009745	0.00003338 0.00009322 0.000382 0.000333 0.00033	8.8876.11	0.00008236 0.00008778 0.000839 0.000839 0.000839	A 15 16 10 11 11 11 11 11 11 11 11 11 11 11 11	0.0000134 0.00001749 0.00001743 0.00001773	4.2631.08
	Maderna	100	0.0085 0.42 0.24 1.53 0.474	00534 0094 015 015 011 0104		890000	5000	0,00018 0,00016 0,00018 0,00018	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	958000	0000 0000 0000 0000 0000 0000 0000 0000	20000	0.034 0.15 2.9 0.0947	885533	8	3
	New Personal	700.0 0.000 0.000 0.000 0.000	0.005 0.0019 0.0715 0.0776 0.256	0.001 0.001 0.007 0.007 0.019	888888	\$0000 \$0000 \$0000 \$0000	0.009 0.009 0.009 0.009	0.00015 0.0015 0.000516 0.0005 0.000283 0.000283	0110 0110 0100 0100 0100 0000	0.00 0.000457 0.0005 0.004 0.004	0.00 0.00 0.00 0.5447 0.54 0.77	0.0002 0.0002 0.0002 0.0002	0.00 0.00 0.00 0.01 1.38 0.00 0.00 0.00	355555	000 000 000	0.001
	SOth Percentile (Medien)	\$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200	0.005 0.005 0.118% 0.116 0.116	0.013 0.0434 0.07368 0.0462 0.0915 0.0915	\$50000 00000 00000 00000 00000 00000	\$0000 \$0000 \$0000 \$0000	\$600 \$600 \$600 \$600 \$600 \$600 \$600 \$600	\$0000 \$0000 \$0000 \$0000	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	11000 1000 1000 1000	0.00 0.00 0.23 0.23 0.23 0.23	70000 700000 700000 70000 70000 70000 70000 70000 70000 70000 70000 70000 70000 700000 70000 70000 70000 70000 70000 70000 70000 70000 70000 700000 700000 700000 700000 70000 70000 70000 70000 70000 70000 70000 70000 70000 70000 700000 700000 70000 70000 70000 70000 70000 70000 70000 700000 70	0.01 0.01 0.034 0.1505 0.04003		000000000000000000000000000000000000000	1000
	į	00000 00000 00000 00000 00000	0.00548 0.00534 0.192 0.193 0.452 0.453	0.0185 0.0411 0.0785 0.0481 0.0981				91000 91000 91000 91000 91000 91000 91000 91000 91000 91000 91000	0.10 0.103 0.143 0.972 0.228	0.00127 0.0018 0.0018 0.0018 0.0018	0.00938 0.00912 0.00144 0.281 0.238		0.0112 0.00908 0.0135 0.0604 0.352 0.0396	2.88 2.89 2.79 2.73 2.13	0.0114 0.0108 0.0123 0.011 0.0116	0000 0000 1000 1000 0000 0000
	Range of Non- Defect	0.005-0.005 0.000-0.005 0.000-0.005 0.000-0.005 0.000-0.005 0.000-0.005	9000-6000		50000-20000 50000-20000 50000-20000 50000-20000 50000-20000	\$0000-\$0000 \$0000-\$0000 \$0000-\$0000 \$0000-\$0000	0.005-0.005 0.005-0.005 0.005-0.005 0.005-0.005 0.005-0.005	0.005-0.000 0.005-0.000 0.005-0.000 0.005-0.000 0.005-0.000	01-01 01-01 01-01 01-01	100-1000 100-1000 100-1000 100-1000	0.005-0.01	0.0000-0.0000 0.0000-0.0000 0.0000-0.0000 0.0000-0.0000	0.005-000	111111	200-52000 200-52000 200-52000 200-52000	1000-1000 1000-1000 1000-1000 1000-1000
	Percent Non-Detects	1008 1008 1008 1008 1008	£ 8 8 8 8	88888	55555	666656	5 5 5 5 5 5	101511	£ £ £ € £ £	2001 2001 2001 2001 2001 2001	\$ \$ 6 6 6 6	88 801 8001 8001 8001 8001	3000 3000 3000 3000 3000 3000 3000 300	55555	8 8 8 8 8 8	1008 1008 1008 1008
	Preparenty of Detection	97.09 97.09 97.07 97.09 77.09	900 800 800 800 800 800 800 800 800 800	11/11 11/13 11/13 11/13 11/13	900 900 900 900 900 900	9/0 9/0 9/0 9/0 9/0 9/0 9/0 9/0 9/0 9/0	0775 0725 0748 0749 0749	4/71 4/71 4/71 4/73 4/73 4/73	1,022 1,022 1,023 11,038 11,038	9,720 4,722 9,723 9,738 9,739 9,739	1/21 1/21 1/21 1/21 1/21 1/21	600 600 600 600 600 600 600 600 600 600	9/21 9/21 17/4 19/20 19/20		9,720 9,721 9,721 9,734	67/0 67/0 8/1/0 6/1/0 6/1/0 6/1/0
	Location id	WENE-1 WAD-1 WAD-17 WAD-18 WAD-18	WBW-1 WA2-1 WA2-9 WAP-17 WAP-18	WBW-1 WBP-1 WBP-17 WAP-18 WAP-19	WEW-1 WAS-1 WAS-17 WAS-18 WAS-18	W8W-1 W8P-1 W8P-17 W8P-18 W8P-18	MBW-1 MAP-3 WAP-37 WAP-32 WAP-33	MBW-1 WAP-1 WAP-17 WAP-18 WAP-18	WRW-1 WAP-1 WAP-17 WAP-18 WAP-18	Wale-1 Wale-1 Wale-9 Wale-17 Wale-18	MBW-1 MAP-1 WAP-17 WAP-18 WAP-19	MBW-1 MBP-1 WB-17 WB-18 WB-18	Wak-1 Wak-1 Wak-17 Wak-12 Wak-18	WBW-1 WAP-1 WAP-17 WAP-18 WAP-18	WBW-1 WAP-1 WAP-17 WAP-18 WAP-18	WBW-1 WBP-1 WBP-17 WAP-18 WAP-19

HALEY & ALDRICH, INC. 400 Augusta Street Suite 100 Greenville, SC 29601 864.214.8750

TECHNICAL MEMORANDUM

December 9, 2024 File No. 132892-102

SUBJECT: Statistical Evaluation of the July 2024 Semiannual Corrective Action Groundwater

Monitoring Data, Winyah Generating Station, Ash Pond A

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §257.93, §257.95, and §257.98 (Rule), this memorandum summarizes the statistical evaluation of the groundwater analytical results obtained from the July 2024 semiannual corrective action monitoring event for Winyah Generating Station (WGS) Ash Pond A. Data for this groundwater sampling event were validated on October 9, 2024, by Santee Cooper and provided to Haley & Aldrich.

BACKGROUND

Coal combustion residual (CCR) and non-CCR wastewater inflows to the WGS Ash Pond A ceased prior to the regulatory deadline of April 11, 2021. The unit has completed closure-by-removal of the CCR as the first step in groundwater remediation as outlined in the Remedy Selection Report dated March 30, 2022. During previous groundwater sampling events, assessment monitoring identified the presence of arsenic, lithium, and molybdenum in one or more downgradient wells at a statistically significant level (SSL) above the Groundwater Protection Standards (GWPS).

Recent analytical testing results were evaluated to determine if SSLs exist above the GWPS of Appendix IV groundwater monitoring constituents. Using interwell evaluations, data from the semiannual sampling event for downgradient monitoring wells were compared to the GWPS established from background well data.

STATISTICAL EVALUATION

The Rule provides four specific options to statistically evaluate whether water quality downgradient of the CCR Unit (§257.93(f) (1-4)) represents a SSL of Appendix IV parameters above the GWPS. The selected statistical method used for these evaluations is the tolerance limit (TL) as certified by Haley & Aldrich, Inc. on October 14, 2017.

An interwell evaluation was used for statistical analysis, which compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. The TL method was used to evaluate potential SSLs above GWPS. The GWPS for each of the Appendix IV constituents has been set equal to the highest value of the maximum contaminant level, regional screening level (RSL), or site background concentration. Compliance well data from the most recent groundwater sampling event were compared to the corresponding GWPS to determine if a SSL existed. Statistical analysis results are presented in Table 1.

South Carolina Public Service Authority (Santee Cooper) December 9, 2024 Page 2

As part of the TL procedure, a concentration limit for each constituent is established from the distribution of the background data with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is called the upper tolerance limit (UTL). Depending on the assumed distribution of background data, parametric or non-parametric procedures were used to develop the UTL. Parametric procedures use assumed distributions of the sample background data to development the limits, whereas non-parametric limits use order statistics or bootstrap methods. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

If an Appendix IV constituent concentration from the event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent was used to evaluate the presence of a SSL. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence.

After testing for outliers, the UTLs were calculated from the background dataset to evaluate whether removal of data was necessary based on sampling or measurement discrepancies. Both visual and statistical outlier tests for the background data were performed. A visual inspection of the data was performed using distribution plots for the downgradient sample data. Based on our review, no sample data were identified as outliers that warranted removal from the dataset.

The background well (WAP-1 and WBW-1) analytical results from previous events were combined to calculate the UTL for each detected Appendix IV constituent. Variability and distribution of the pooled dataset were reviewed to establish the method for UTL calculation.

Per the document Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009 (the Unified Guidance), background concentrations were based on statistical evaluation of analytical results collected through July 2023 and updated in the Chemstat output. The background dataset will be updated in Table 1 again after four additional data points are collected (second semiannual event of 2025) in accordance with the Unified Guidance.

TREND ANALYSIS

Mann-Kendall trend analyses were performed on datasets of sufficient sample size. Results of the trend analysis are included on Table 1. In summary, approximately 83 percent of trends analyzed are identified as stable or decreasing for the compliance wells for Appendix IV constituents. Dynamic site conditions, due to both natural conditions and closure activities, may result in variability in the trends. It is important to note that increasing trends are not part of the comparison criteria for triggering a SSL. Trend analysis will continue to be used to monitor and evaluate concentrations in the context of overall site conditions.

¹ Visual and statistical outlier tests for background data were performed using Chemstat 6.3.0.0 and U.S. Environmental Protection Agency's ProUCL 5.1 software.

South Carolina Public Service Authority (Santee Cooper) December 9, 2024 Page 3

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

As stated, Appendix IV constituent detections from downgradient well samples were compared to their respective GWPS (Table 1). Based on previous compliance sampling data and statistical evaluations, interwell comparisons were used. No outliers were removed. Consistent with previous results, arsenic and lithium remain the only Appendix IV constituents present in groundwater at SSLs above GWPS, and groundwater monitoring will continue:

- Arsenic SSLs at WAP-9, WAP-17, WAP-18, and WAP-19
- Lithium SSLs at WAP-9, WAP-17, WAP-18, and WAP-19

Molybdenum, which was previously identified as a SSL, was not identified as a SSL in the July 2024 event; however, there is a recent increasing trend. While landfill construction within the footprint of a portion of Ash Pond A was completed in December 2022, Ash Pond A closure activities are not yet complete. As closure activities continue in the footprint of Ash Pond A, downgradient groundwater conditions may remain in a state of flux, contributing to potential short-term fluctuations in some of the concentrations of Appendix IV SSLs. The fluctuations are expected to subside once aquifer equilibrium conditions are restored.

Enclosures:

Table 1 – WGS Ash Pond A July 2024 Semiannual Corrective Action Monitoring Data

TABLE

200	355	- 31	30		No.	No.	Min			Yes	Yes	Yes	Yes			940	ž.	No.	No	- 100		100	T.	Ne	No	72		70	TI.	No	No.			No	an .	2 2				2 4	1 10	lin.			180	No	0 1	200	3.	2	No	22	Ne			Yes	Yes	Yes	Yes
	Exceedance above Background at Individual Well				. 2	22	z					>	>			N	2	×	z			-	z	и	2				16)/(Z			N.	z.	2 2				2 2	2	N			36	14	2 2	Z.			N 20	Z.	N			>	>	> 1	*
	GWPS (Higher of MCL/RSL or Background Limit)		90036						0100						520						0.004						10.0						07					8000						40					9001	arain.					0.040				
Inter-well Analysis	2					*	4			¥							N		£			ŀ	×	· W	W.				ĸ	E	9			N.	sc :				ĺ.			×			*	u					e e	E	æ						
Inte	Upper Tolerance Limit		9000						0.010						0.094						00000						0,0000						0.005					0,000						0.140					0000	-					0.012				
	LC 95% Upper								_		960	0.216									•						•															5,000'0														990		170	240
	Detect? LCL				2 2	2	2			>		٥	·			>	>	>	,			2	2	z	74			×	22	2	z			z	2	2 2				2 4	. >				z	z	= 2				2 2	Z Z	N N				·	·	*
	July 2024 D				0.005	0.005	90.00			0.055	0.000	0.117	0.147			0.110	81010	0.103	0.078			1000	0,0005	50001	50001			COMP	50001	50000	5000			5000	5005	0.005	-		-	50001	0.00071	60001			005-1	0.100	0.100	0.340			0.001	1001	0.001			0.034	0.077	0.081	0.421
									nethic .		netric o	atric 6	netric .		atric									•	0			0	0	0	٥		ii.							0 0	0	0		athle									Š		nanic				negative .
	Distribution		10A						- Rosephanin	Norma	Nongasam	Non-paren			Hoteparin -						114						10.4						Non-param					Non-police						Mongaram Mongaram					Money or annual						Thompson -	Norma	Norma	Norma	Non-pastam
	Trend		144	10.0	NA AN	HOA	144	100	101	Decreasing	Decreasing	Stable	Increasing	Chables	Increasing	Stable	Decreasing	Stable	Stable		100	Part.	334	163,	10.6		NO.	MM	106	104	144	404	hak	10.0	HA	NA NA		Increasing	Increasing	NA.	Increasing	106		100	16.8	Sable	Stable	Bussacul	14.6	919	NA NA	344	NA		RIA	Decreasing	Decreasing	Stable	Stable
	Ber Removed		3(4	10.6	NA.	364	NA	7/7	2	No	No.	No	No		30	90	No	900	No		No.	200	NA	MA	NN		NA NA	101	356	144	ORC.	ş	10.0	NA	904	NA NA		500	910	0 1	No	360		No.	No	310	No.		364	No	100	NA	94A		100	No	No	No.	No
	Outlier Presence Outlier		NA.	10	NA NA	NA			90	No.	les .	100				10		000			100	70 V	177	NA.	N/A		4 4	15	NA	10.0			1 5	NA.	NA.	W W			No	0 1	in an			21.9	No	100	9)			12	NA	5			No.	No		No	-
									-																								ŀ			-																				F			
	Number of Non-Detection B Excedances		1	-	-	-		•	0	0	0	0	0	•	0	0	0	0	0	•	9 6	9 6	0	0	0	•	0 0	0	0	0	0	•	0	0	0	0 0		0	0 0	0 0	0	0	ľ	0	0	0	0 0	•	0	0	1 0	0	0		0 0		0	0 4	0
	Number of Betection Exceedances		0	0	0 0	0	0	•	0	23	77	z	77	0	0	0	0	0	0		0 0	0 0	0	0	0		0 0	0	0	0	0	•	0	0	0	0 0		1	0 0	0 0	0 0	2	ŀ	0	0	0	0 0	•	0	0	0 0	0	0		0 0	77	12	2 2	23
	Detection Exceedances (Y/N)		z	z	zz	z	z	2	. 2	>	*	>	*	,	2	z	z	z	z		E 2	2	2	z	z		2	z	z	z	z	2	z	z	2	2 2		*	2 2	2 2		٨		2	z	z	z :		×	z	2 2	z	z		2 2	. >	>	> 1	
	Report Result Unit			-	men men			Amer	H			mg/L		and a	wey.	Tel.	meA	MeA.	We/L	F	-	Went American		-	-		mg/L		Mer		me/L	Vone	Tall Yall	me/	me/	me/			MgA					meA	Ngm WeA	Tale A	V9w	TO THE STATE OF TH	Ē		We/		-		men	-	-	THEY	-
	nt of CCR ce MCL/RSL		4 0.006	3	9000		9000	7 001	H			7 0.01			F	1 2				0000	0000	7000	0000	0.004	0000		0000				0.005	10	H			08 001				9000	T					*					0.015	H			7 0.04 A 0.04	H		H	
	rd Coefficient of			62.00 25					2 0,2803							5 0.2951				•	0	0 0	0	0	0		0		0	70	0	•	0		0			1,476					ľ	968600		6 0.429				1024		H			72 0217	1-3		6290 1	
	Standard Deviation	Antimony, Total (mg/L)	0.004472		0.004677		0.00002311 0.004808	0.0000113	H		0.04082		6 0.09625 ortal free/11	0001140	ł	4 0.02355			5 0.02034	Beryllium, Total (mg/L)	9 0	9 6	0	0	0	ium, Total (mg/L)	0 0	000	0	000	0	Total (mg/L)	0	0.0		5.6476-11	otal (mg/L)	05 0.001762		00	0,0007846	36 0.002799						tal (me/L)	14 0.002667	99 0.001974	42 0.002084		37 0.00213	m) les	88 0.001972			0.1394	
	n Variance	x-IV: Antimony,	0,00002	0.000000077	0.00002311	0.00002311	0.00002311	# 3136.07	0		0.001666	0.1724	0.009265	H		0.0005544	0.00002542	0.0003748	0.0004135	K-IV; Beryllium,	9 0	9 0	0	0		ndlx-IV: Cadmium,	0	5.8516-07	۰	-	0	CLR Appendix to Chromatum, 101al (mg/L)	0	0.000001993	0	3.1896-21	CCR Appendix-N: Cobalt, Total (mg/L)	0.000003105		1286-09	6.1		ndbr-IV; F	0.000104	0.08162	0.003672	0.5401	offinity tead. To	0.000007114 0.00	0.000003899	0.00000999	0.0000004537	0.0000004537	Sk-IV: Uthlum,	0.000003888		0.03642	0.01944	0.09253
	Madmum tile Drect	CCR Append	9	9			S Cro Assessed Mr.		47 03096				S 0474		H			4 0141	-	CCR Append	0 4	0 4	90	9		CCR Appe	0 50	13	50	27 0.0068				23		0 10			95 0,0016		27 0,0033		8	6.14		7 632	1	CCB		54 0.00456	* ×	22		CR	96000			5 654	
	side 95th		0000	9000	000	800'0	0000	0,000	0.00847	0399			0.2548	0.04338	t				0.0992	0 0000	0,000	0,0005	0.0005	0.0005	0.0005	0.0004	0.0005	0.001775	0.0005	0.000527	0.0005	9000	5000	0.00925	9000	5000		0.003108		0.00008	1			0.127	0.108	0.247	1.98	029	10.0	0.004354	0.0025	0.003625	0.003625		100	0.1225	0.5394	0.495	0.966
	S0th Percentile (Median)		9000	0.005	0.005	0000	0000	9000	0.005	0.189	0.109	0.2545	0.1185	9100	0.04355	0.0719	0.04625	0.09175	0.05235	20000	50000	0,000	0.0005	90000	0.0005	0 0000	0,000	0,000	0.0005	90000	0.0005	0000	0000	9000	0000	0.005		0.0005	0.0005	0,000	0,00052	0.0005	-	10	0.1	07	0.91	0.185	0.001	0.001	0.001	0000	0.001		100	0.0695	0.22	0.1935	0.26
	Mean		900'0	0.00585	0.00589	0.00594	0.00594	0.00445	0.00542	0.187	0.121	0.437	0.133	0.0167	0.0423	0.0798	0.0481	0.0954	0.0567	0,000	00000	90000	0,000	0.0005	0,0005		0,000	0.000708	0.0005	0.00051	0.0005	9000	0.005	0.00522	0000	0000		0.00119	0.000718	0.000508	0,0000	95100'0		0.103	0.159	0.141	0.934	07.00	0.00221	0.00193	0.0004	0.00192	0.00192		000000	0.0748	0.253	0.222	0.363
	Range of Non- Detect		0.005-0.025	0.000-0.025	0.000-0.025	0.002-0.025	0.002-0.025	00000000	0.000-0.005	4	v							×		0 0004 0 0005	0000-0000	0.0005-0.0005	0.0000-0.0000	0.0006-0.0005	0.0000-0.0005		0.0008-0.0005	0000-0000	0.0005-0.0005	0.0000-0.0000	0.0005-0.0005	0 00% 0 00%	0.005-0.005	0.005-0.01	0.000-0.005	0000-0000		0.0005-0.0005	0.0005-0.0005	0,0000-0,0000	0.0000-0.0000	0.0005-0.0005		01-01	01-15	0.1-0.1	0101	0.113	10.00.00.0	0.001-0.01	0.001-0.05	0.00.00.0	0.000.001		0.005-0.01				
	Percent Non-Detects		1000	100%	100%	30001	100%	1000	75%	860	360	%	360	300	8 8	950	350	86	36	70001	10001	100%	100%	100%	100%		100%	1007	10001	888	1000	956	100%	10001	100%	100%		589	39%	958	30%	71%		91%	928	30%	30%	417	10001	83%	100%	10001	100%		35 W	36	*50	8	8
	Frequency of Detection		0/30	0/30	61/0	81/0	81/0	000	6/24	25/25	24/24	22/22	22/22	40764	24/24	25/25	24/24	22/22	22/22	9130	0/50	Or A	61/0	81/0	81/0	-	0/21	U/24	61/0	1/18	81/0	101	0/73	0/23	61/0	81/0	2	1/12	27/6	1/30	10/30	12/9	100	2/23	2/24	12/34	16/23	19/64	12/0	4/23	0/24	81/0	81/0		1/22	22/22	23/23	22/22	23/13
	Location Id D		5W-1	WAP-1	WAP-17	WAP-18	WAP-19	4,0804.1	WAP-1	WAP-9	WAP-17	WAP-18	AP.19	2007	19-1	WAP-9	WAP-17	10-18	WAP-19	* 97	WATER 1	Wap.q	WAD-17	WAP-18	WAP-19		WAP-1	6-pvin	WAP-17	WAP-18	WAP-19	100000	WAP-1	WAP-9	WAP-17	WAP-18		WBW-1	WAP-1	WAP-9	WAP-18	WAP-19		WAP-1	6-4%	WAP-17	AP.18	64-49	WBW-1	WAP-1	WAP-17	WAP-18	WAP-19		WBW-1	WAP-9	WAP-17	WAP-18	61.00
	Local		W	W.	WA	WA	W	8.99	W	W	WA	W	W	200	W	W	WA	WA	WA	-	M See	W	WA	WA	WA		W	M	WA	WA	WA	3	W	W	W	WA		W	W	*	WA	WA		W	W	W	W	M	W	Α.	WA	WA	WA		W	W	W	W	W

																							-	Inter-well Analysis			
Location Id	Frequency of Detection	f Percent Non-Detects	Range of Non- Detect	Mean	SOth Percentile (Median)	95th Percentile	Madmum Detect	Variance	Standard Deviation	Coefficient of Variance	CCR MCL/RSL	Report Result Unit	Detection Nu Exceedances De (Y/N) Exc	Number of N Detection Nor Exceedances Ex	Number of Non-Detection Our Exceedances	Outlier Presence Outlier Removed	Outlier Removed	Trend	Distribution	July 2024 Concentration	Detect?	10.88 k	Upper Tolerance Limit	a	GWPS (Higher of MCL/RSL or Background LImit)	Exceedance above Background at Individual Well	ğ
						٥	CR Appendix-IV	CCR Appendix-IV: Mercury, Total (mg/l.)	I (mg/L)																		
WBW-1	1/30	95%	0.0002-0.0002	0,0002	0.0002	0.0002	00000	0	0	0	0.002	meA	z	0	0	240	340	39.4	100				00000		0000		
WAP-1	0/30	10001	0.0002-0.0002	0.0002	0.0002	0.0002		0	0	0	0.002	men	z	0	0	NA	NA	10.00	790				70000		7000		
WAP-9	81/0	100%	0.0002-0.0002	0.0002	0.0002	0.0002		0	0	0	0.002	men	z	0	0	NA	314	HSA		0.00020	14			W.		z	He
WAP-17	61/0	10001	0.0002-0.00024	0.000202	0.0002	0.000204		8.4216-11	0.000000177	0.04541	0.002	men	z	0	0	NA	NA	104		0.00020	N			N.		2	- No.
WAP-18	81/0	100%	0.0002-0.0002	0.0002	0.0002	0.0002		0	0	0	0.002	meA	z	0	0	NA	3/4	10.6		0.00020	2			N.		2	No.
WAP-19	81/0	10001	0.0002-0.0002	0.0002	0.0002	0.0002		0	0	0	0.002	mer	z	0	0	NA	- 314	- 144		0.00020	22			i.		×	Hin
						COR	Appendix-N: h	CCR Appendix-IV: Molybdenum, Total (mg/L)	stal (mg/L)																		
WBW-1	0/22	100%	0.006-0.05	0.0109	0.01	10.0		0.00000000	0.006949	0.8203	0.1	mg/L	z	0	0	MA	3/4	754					0.000				
WAP-1	0/22	100%	0.006-0.01	98800'0	10.0	100		0.0000046	0.002145	0.242	0.1	WeA.	z	0	0	104	NA	15.6	704				0000		0.1		
WAP-9	8/22	59%	0.006-0.01	0.0132	10.0	0.02962	0034	0.00006787	0.008238	0.6263	0.1	men	z	0	0	No	No	Decreasing		0,005	ı			W.		2	Ne
WAP-17	22/22	360		0.0581	0.04325	0.108	0.35	0.004727	0.06875	1183	10	We/L	٨	2	0	Yes	. No.	Stable		6000	>			N.		22	No.
WAP-18	21/11	360		0.345	0.158	13	5.9	0.428	0.6542	1897	0.1	meA	٨	13	0		No	Increasing	Non-parametric	0.20	>	0.034		*		z	THE STREET
WAP-19	19/21	10%	0.006-0.05	0.0383	0.0391	0.057	0.0947	0.0003872	0.01968	0.5135	0.1	mg/L	z	0	0	Yes	No	Stable		0.013	>			14		10	New
						8	R Appendix-IV: #	Radium-226 & 228 (pCl/L)	(1/pd/1)																		
WBW-1	15/22	32%	1	2.96	4	4.33	4.39	2.15	1,466	0.4955	\$	pc/A	z	0	0	No	361	Stable	Bath procupatible				203		5		
WAP-1	22/22	23%	1	3.34	4	5.705	5.97	2.446	1.564	0.4683	s	PCIA	*		0	Ples	100	Stable					100		25.51		
WAP-9	19/22	14%	77	3.62	4	5.326	223	1.811	1.346	0.3718	10	PCIA	*	3	0	940	340	Decreasing		3.180	>			W		И	940
WAP-17	15/22	32%	1	2.8	3225	4.372	5.51	2.568	1,603	0.5732	5	PCIA	*		0	No	140	Decreasing		2.950	٨			N.		2	Title
WAP-18	15/22	32%	1	3.16	4	4.306	4.46	1.684	1.298	0.4111	w	PCIA	z	0	0	900	909	Decreasing		3.369	>			u.		z	No
WAP-19	13/22	41%	1	3.26	4	4.675	167	1.442	1.201	0368	\$	pci/L	z	0	0	940	900	Stable		4.690	>			7.		z	940
						0	CCR Appendix-IV:	: Selenium, Total (mg/l.)	of (mg/L)																		
WBW-1	0/21	10001	0.0025-0.02	0.0113	0.01	0.02		0.000002226	0.004718	0.4172	900	meA	z	0	0	76.6	NA	164	. 709				0000		0.06		
WAP-1	6/23	100%	0.0025-0.02	0.0108	10.0	0.02		0.00001672	0.00409	0.38	90'0	meA.	×	0	0	NA	304	14.4									
WAP-9	0/34	100%	0.0025-0.05	0.0122	100	0.02		0.00008224	0.009068	0.7441	90.0	meA	z	0	1	MA	553	954		0.00	Z					z	290
WAP-17	61/0	100%	0.0025-0.02	0.0109	100	0.02		0.000000029	0.004504	0.4124	90.0	meA	×	0	0	NA	NA	314.		0.010	- 14			. 10		N.	No
WAP-18	81/0	100%	0.0025-0.02	0.0115	10.0	0.02		0.00002584	0.005083	0.4409	90.0	men	z	0	0	PAR	909	BSA		0.00	ž.			- 10		И	Ne
WAP-19	81/0	100%	0.0025-0.02	0.0115	100			0.00002584	0.005083	0.4409	90'0	mer	z	0	0	NA	554	19A		0.00	Z			W.		2	100
						٥	Of Appendix-IV	COR Appendix-IV: Thallium, Total (mg/L)	ul (mg/L)																		
WBW-1	0/30	100%	0.001-0.001	0.001	1000	0.001		0	0	0	0.002	Mg/L	z	0	0	MA	854	, NA,	100				1000		0000		
WAP-1	0/30	100%	0.0000-0.001	0.000955	0.001	0.001		4.05E-08	0.0002012	0.2107	0.002	mgA	z	0	0	NA	344	955									
6-Jun	u/is	10007	0.0001-0.001	0.001	0.001	0000		9	٥	0	0.002	merk	z	0		NA	NoA	NVA		U.U.1	N			ш			140
WAP-17	61/0	10001	0.001-0.001	0.001	0.001	0.001		0	0	0	0.002	men	z	0	0	NA	MA	NA		0.001	z			M		×	100
WAP-18	81/0	10001	0,001-0,001	0.001	0.001	0.001		0	0	0	0.002	W6/L	z	0	0	NA	MA	NA		0.001	Z			N		N	No
WAP-19	81/0	100%	0.001-0.001	0.001	0.001	0.001		0	0	0	0.002	meA	z	0	0	MA	MA	NA		0.001	z			×		11	Har

HALEY & ALDRICH, INC. 400 Augusta Street Suite 100 Greenville, SC 29601 864.214.8750

TECHNICAL MEMORANDUM

July 15, 2024

File No. 132892-100-005-02

SUBJECT: Statistical Evaluation of the February 2024 Semiannual Corrective Action Groundwater

Monitoring Data, Winyah Generating Station, Ash Pond B

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §257.93, §257.95, and §257.98 (Rule), this memorandum summarizes the statistical evaluation of the groundwater analytical results obtained from the February 2024 semiannual corrective action groundwater monitoring event for Winyah Generating Station (WGS) Ash Pond B. Data for this groundwater sampling event were validated on April 16, 2024 by Santee Cooper.

BACKGROUND

All coal combustion residual (CCR) and non-CCR wastewater inflows to WGS Ash Pond B ceased prior to the regulatory deadline of April 11, 2021. The unit is undergoing closure-by-removal as outlined in the Remedy Selection Report dated March 30, 2022. During previous groundwater sampling events, assessment monitoring identified the presence of arsenic, lithium, and molybdenum in one or more downgradient wells at a statistically significant level (SSL) above the Groundwater Protection Standards (GWPS).

Recent analytical testing results were evaluated to ascertain if SSLs exist above GWPS for Appendix IV groundwater monitoring constituents. Using interwell evaluations, data from the semiannual sampling event for downgradient monitoring wells were compared to the GWPS established from background well data.

STATISTICAL EVALUATION

The Rule provides four specific options to statistically evaluate whether water quality downgradient of the CCR Unit (§257.93(f) (1-4)) represents a SSL of Appendix IV parameters above the GWPS. The selected statistical method used for these evaluations is the tolerance limit (TL) as certified by Haley & Aldrich, Inc. on October 14, 2017.

An interwell evaluation was used for statistical analysis, which compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. The TL method was used to evaluate potential SSLs above GWPS. The GWPS for each of the Appendix IV constituents has been set equal to the highest value of the maximum contaminant level, regional screening level (RSL), or site background concentration. Compliance well data from the most recent groundwater sampling event were compared to the corresponding GWPS to determine if a SSL existed. Statistical analysis results are presented in Table 1.

South Carolina Public Service Authority (Santee Cooper) July 15, 2024 Page 2

As part of the TL procedure, a concentration limit for each constituent is established from the distribution of the background data with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is called the upper tolerance limit (UTL). Depending on the assumed distribution of background, parametric or non-parametric procedures were used to develop the UTL. Parametric procedures use assumed distributions of the sample background data to development the limits, whereas non-parametric limits use order statistics or bootstrap methods. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

If an Appendix IV constituent concentration from the event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent was used to evaluate the presence of a SSL. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence.

After testing for outliers, the UTLs were calculated from the background dataset to evaluate whether removal of data was necessary based on sampling or measurement discrepancies. Both visual and statistical outlier tests for the background data were performed. A visual inspection of the data was performed using distribution plots for the downgradient sample data. Based on our review, no sample data were identified as outliers that warranted removal from the dataset.

The background well (WAP-1 and WBW-1) analytical results from previous events were combined to calculate the UTL for each detected Appendix IV constituent. Variability and distribution of the pooled dataset were reviewed to establish the method for UTL calculation.

Per the document Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009 (the Unified Guidance), background concentrations were based on statistical evaluation of analytical results collected through March 2023 and updated in the Chemstat output. The background dataset will be updated in Table 1 again after four additional data points are collected (second semiannual event of 2025) in accordance with the Unified Guidance.

TREND ANALYSIS

Mann-Kendall trend analyses were performed on datasets of sufficient sample size. Results of the trend analysis are included on Table 1. In summary, each well with analyzed trends is identified as stable or decreasing for the compliance wells. It is important to note that increasing trends are not part of the comparison criteria for triggering a SSL. Trend analysis will continue to be used to monitor and evaluate concentrations in the context of overall site conditions.

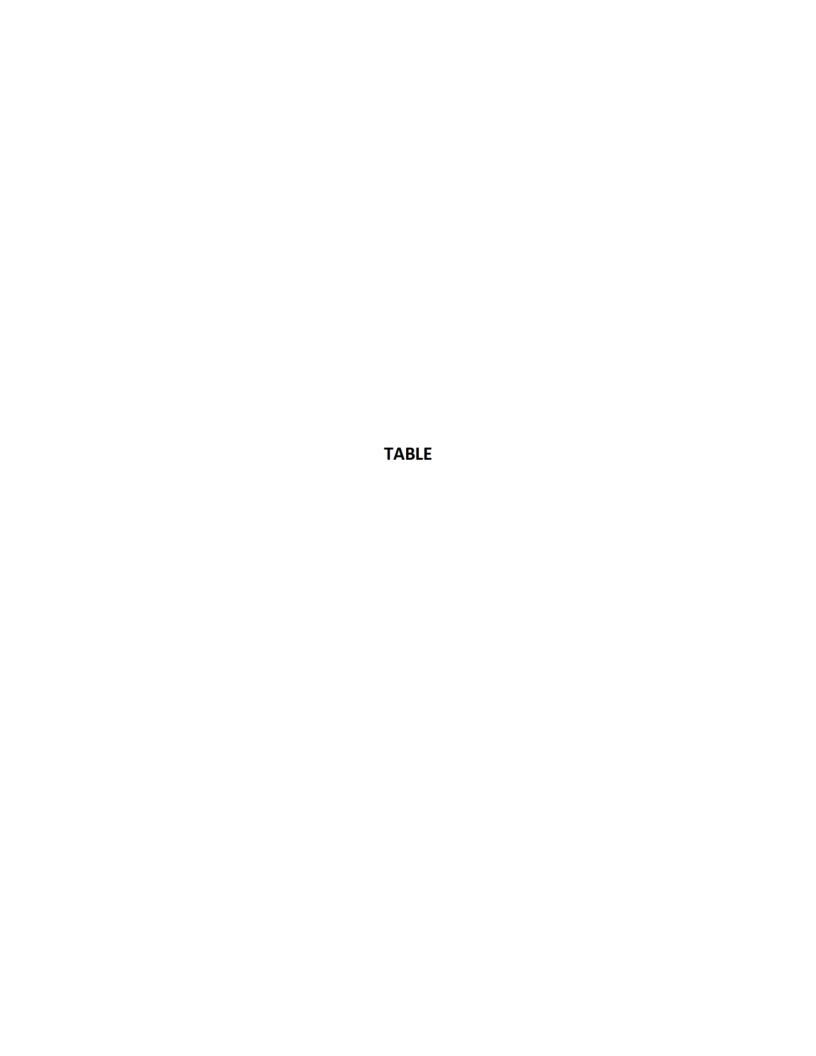
RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

As stated, Appendix IV constituent detections from downgradient well samples were compared to their respective GWPS (Table 1). Based on previous compliance sampling data and statistical evaluations, interwell comparisons were used.

South Carolina Public Service Authority (Santee Cooper) July 15, 2024 Page 3

Consistent with previous results, arsenic has one SSL above the GWPS.

Arsenic SSL at WAP-27


As noted in the second 2022 semiannual statistical memorandum, monitoring well WAP-27, which is constructed with a deeper screened zone, was integrated by Santee Cooper as a temporary substitute for WAP-20 until the water table is restored to historical levels.

As noted by the lack of lithium and/or molybdenum SSLs during the first semiannual event of 2024 which have been identified previously, concentrations continue to decrease. Concentrations are expected to continue to decrease once closure is complete and equilibrium groundwater conditions are restored. The expected date for completing CCR removal for Ash Pond B is 2025. Groundwater trends will continue to be monitored during future sampling events.

Enclosures:

Table 1 – WGS Ash Pond B February 2024 Corrective Action Monitoring Data

		RECTIVE ACTION IM
TABLE 1	WGS ASH POND 8	FEBRUARY 2024 CO

38	N N O	9 0 N	% % %	No on	N O O	N ON ON	N N N	9 9 9 2 8 8	0 N N	2 N N	N 0 0	2 2 2	N 0 0	2 2 2	0 N N
Exceedance above Background at Individual Well	z z z	22.	2 2 2	zzz	2 2 2	222	Z Z Z	222	222	2 2 2	2 2 2	2 2 2	222	2 2 2	2.2.2
GWPS (Higher of MCL/RSL or Background Limit)	0.025	0.010	2000	0000	9000	0.100	8000	400	0.015	0000	00000	0.10	293	0000	0.002
SSI MO	222	223	> ≥ >	z z z	ZZZ	ZZZ	222	222	222	> ≥ ≥	2 2 2	222	ZZZ	z z z	2 2 2
Upper Tolerance Limit	0025	6000	P6070	90000	90000	09000	0.0084	0140	00100	0.012	00000	0500	89	0000	1000
Select Uppe		600								0003					
Detect?															222
February 2024 Concentration	9000 0000 0000	9000	0.286	\$0000 \$00000	\$0000 \$0000	9000	\$0000 \$0000	0100	0000 0000	9900	0,0002	0000	3.046 2.250 1.740	0000	0000 0000
Distribution	**	Normal Normal	Not parametric	100	A STANFORM	164.	Hon-parametric.	Non-parametric	Nov-parametric	Non-parametric	5	4	Nos-parametric	141	48
Trend	NA NA NA NA	No.	Stable Increasing Stable Decreasing Stable	NAA NAA NAA NAA	19,4 19,5 19,5 19,5 19,5 19,5	2222	No included in the state of the	NA N	80.4 190.4 190.4 190.4 190.4	88 88 84 84 84 84 84 84 84 84 84 84 84 8	NAA NAA NAA NAA	84.6 84.6 84.6 84.6 84.6	Stable Decreasing Decreasing Decreasing Stable	A	NA NA NA NA
Outlier Removed	MA MA MA	NA No No NA NA	23222	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80.5 80.5 80.5 80.5 80.5	78 78.5 78.5 78.5 78.5	2 2 2 2 2	No. No. No.	86.4 84.5 84.4 18.4 19.4	2 2 2 2 2	962 16.6 16.6 16.4 16.4	84. 84. 84. 84. 84. 84. 84. 84.	2 2 2 2 2	15.5 10.5 16.5 16.5	81.8 81.8 82.8 82.8 82.8
Outlier Presence	A A 4 4 4	YAA Yess Yaa No	12112	NA NA NA NA NA	85.6 85.6 85.6 85.6 85.6	No NA NA NA NA	Yes No No No	Mark Mark	16.0 7.06.5 16.00	A 25 20 20 20 20 20 20 20 20 20 20 20 20 20	No that that the the the the the the the the the th	AN 20 20 20 20 20 20 20 20 20 20 20 20 20	0 8 8 8 M	******	25 25 25 25 25 25 25 25 25 25 25 25 25 2
Number of Non-Detection Exceedances		000#0	00000	000=0	00000	00000	00000	00000	00000	00000	00000	00000	00000	00000	000=0
Number of Detection Excedences		00000	00000	00000	00000	00000				00#00		00000	04240	00000	00000
Detection Exceedances (Y/N)	z z z z z	z z > z >	z z z z z	z z z z z	z z z z z	z z z z z	> z z z z	z z z z z	z z z z z	z z + z z	z z z z z	z z z z z	z z	z z z z z	z z z z z
Report Result Unit	724	724	7227	13m 13m 13m 13m	73m 73m 73m	72m 72m	2222	77m 17m 17m	7/2m 7/2m 7/2m	73m 73m 73m	724	726	1/02 1/02 1/02 1/02 1/03 1/03	77m 77m 77m 77m	77m 77m 77m
COR MOL/RSL	9000	0.01	~~~~	MO0.0 MO0.0 MO0.0 MO0.0	\$000 \$000 \$000 \$000 \$000	22222	9000	4444	0.015 0.015 0.015 0.015 0.015	700000	2000 2000 2000 2000	22222		0.05	0.002
Coefficient of Variance	0.7881 0.7985 0.825 1.358 0	0.2091 0.2405 1.556 0.9534 0.1065	0.6344 0.6632 0.1386 0.5588 0.0718	0 0 1.427 0	0 0 0 1.427 0	0 0 0 1331	0.53 0.53 0 1,779 0.1479	0.1009 0.1009 0.1094 1.15F-08 0.1884	1156 1.02 1.114 1.244 0.4899	0.193 0.2279 0.4041 0.3168 0.3164	00000	0.8105 0.2224 0.2224 0.8105 0.3499	0.503 0.482 0.396 0.5413 0.3134	0.4347 0.3874 0.432 0.1795	0 0.2167 0 1.427 0
Standard Deviation	0.00458 0.00456 0.01175 0	0.000928 0.00131 0.04105 0.005594 0.009234	0.000099	0 000001	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 001210	0.000399 0.000399 0.000399 0.000399	115E-09 0.01041 0.01129 11.15E-09 0.02041	0.002722 0.00208 0.003089 0.003089	0.000791 0.000079 0.00018 0.000187 0.000554	00000	0.00907	1,499 1,588 1,697 1,667 0,587	0.00431 0.00412 0.00412 0.005607 0.005607	0.0002655
Variance	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.571E-07 0.00000159 0.001686 0.00000113 0.000008509	0.000137 0.0 0.0001345 0.0 0.00009415 0.0 0.00009415 0.0 0.00009415 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0 000001191 0.00	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000 00001466 000	0.00000337 1.442E-07 0 0.000005076 6.657E-09	132E-18 0.0001084 0.0001275 1.32E-18 0.0004167	0.0000003407 0.0000003804 0.0000003543 0.000000375	0.000009528 0.00001473 0.0000965 0.00000965	0 0 0 0	0.00008226 0.00 0.000000488 0.00 0.000001048 0.00 0.00008226 0.00 0.000004167 0.00	2347 1 2521 1 2679 1 2778 0.3	000002	0 4.268E-08 0 0.000004745
Maximum Detect		0.0085 0.14 0.00572 0.0988	0.054 0.094 0.396 0.15 0.15	W bendan w	000	96200	0.0038 0.0036 0.00231 0.00068				00		4.39 5.97 5.67 3.67 3.02	Azoendle-A	
95th Percentile	7000 2000 8000 8000	0.005 0.00819 0.134 0.00672 0.0974	0.004 0.004 0.373 0.37	0.0005	0.0005	\$000 \$000 \$000 \$000	0.0015 0.0015 0.0005 0.0005 0.0005	01 0.1385 0.119 0.1	0.00 0.000457 0.0002 0.0002 0.000125	0.01 0.039 0.01 0.0175	0.002	0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00	27.28.2	000 000 000 000 000	0.001
SOth Percentile (Median)	8000 8000	0,006 0,006 0,006 0,006 0,008	0.015 0.0434 0.27 0.0506 0.114	\$0000 \$0000 \$0000	\$0000 \$0000 \$0000	8000 8000 8000 8000 8000	\$0000 \$0000 \$0000	2222	1000 1000 1000 1000	0.01 0.036 0.036 0.01 0.00	0.0002 0.0002 0.0002 0.0002	0001	534 534 4 1.76	000100000000000000000000000000000000000	1000 1000 1000 1000
Mean	\$0000 \$0000 \$0000 \$0000	0.00443 0.00524 0.0264 0.00587 0.0866	0.0455 0.0411 0.275 0.0955 0.113	0.0000 0.0000 0.0000 0.0000 0.0000	0,000 0,000 0,000 0,000 0,000 0,000	0.005 0.005 0.0005 0.0000	0.00123 0.000716 0.0005 0.00127 0.000552	010 0103 0103 010	0.00227 0.00175 0.00175 0.00248	0.00928 0.00912 0.003 0.0098 0.00983	0.0002	0.0112 0.00905 0.00905 0.0112 0.00583	2.98 3.29 4.86 3.08 1.88	0.0114 0.0208 0.0208 0.0129 0.0117	0.001
Range of Non-Detect	0.005-0.025 0.002-0.025 0.002-0.025 0.002-0.05 0.005-0.005	0.009-0.005		0.0005-0.0005 0.0005-0.0005 0.0005-0.0005 0.0005-0.0005	0.0005-0.0005 0.0005-0.0005 0.0005-0.0005 0.0005-0.0005	0.005-0.005 0.005-0.005 0.005-0.005 0.005-0.005	0.0005-0.0005 0.0005-0.0005 0.0005-0.0005 0.0005-0.0005	0101 0101 0101 0101	0.001-0.01 0.001-0.01 0.001-0.01 0.001-0.01	0.005-0.01	0.0002-0.0002 0.0002-0.0002 0.0002-0.0002 0.0002-0.0002	0.005-0.05 0.005-0.01 0.005-0.01 0.005-0.05 0.005-0.05	11.1.	0.0025-0.02 0.0025-0.02 0.0025-0.02 0.005-0.025 0.01-0.02	0.001-0.001 0.001-0.001 0.001-0.001 0.001-0.01
Percent R	8001 8001 8001 8001 8001 8001 8001 8001	100% 78% 48% 90% 0%	88888	100N 100N 100N 100N	100N 100N 100N 100N	95% 100% 100% 94% 100%	217 62% 100% 90% 67%	858 8118 8001 878	100% 82% 100% 88% 100%	95% 95% 95% 33%	958 1008 1008 1008 1008	100% 100% 100% 100%	355 265 267 267 267 267 267 267 267 267 267 267	100K 100K 100K 100K	100% 100% 100% 100%
Frequency of Detection	0/19 0/10 71/0 71/0	0/21 5/23 12/23 2/21 6/6	21/21 23/23 23/23 23/23 23/23 23/21 24/21 24/21 24/21	0/19 0/19 0/17 0/17	0/20 0/22 0/22 0/17 0/6	1/20 0/22 0/22 1/17 0/8	6721 8721 0721 2721 276	1/22 2/22 2/22 0/22 2/6	0/20 4/72 0/22 2/17 0/6	1/21 1/21 21/21 1/21 4/6	1/19 0/19 0/17 0/17 0/6	0/21 0/21 0/21 0/21 0/6	14/71 16/71 21/71 17/71 6/8	0/20 0/22 0/22 0/17 0/17	0/19 0/19 71/0 71/0
Location Id	WEW-1 WAP-1 WAP-10 WAP-21 WAP-27	WBW-1 WAP-1 WAP-10 WAP-21 WAP-27	W5W-1 WAP-1 WAP-10 WAP-21 WAP-27	WBW-1 WAP-1 WAP-10 WAP-21 WAP-27	WBW-1 WAP-1 WAP-10 WAP-21 WAP-27	WBW-1 WAP-1 WAP-10 WAP-21 WAP-27	WEW-1 WAP-1 WAP-10 WAP-21	WEW-1 WAP-1 WAP-10 WAP-21 WAP-27	WEW-1 WAP-1 WAP-21 WAP-27	WBW-1 WAP-1 WAP-10 WAP-21 WAP-27	WAP-1 WAP-1 WAP-21 WAP-27	WBW-1 WAP-1 WAP-21 WAP-27	WEW-1 WAP-1 WAP-10 WAP-21 WAP-27	WEW-1 WAP-1 WAP-10 WAP-21 WAP-27	WEW-1 WAP-1 WAP-10 WAP-21

HALEY & ALDRICH, INC. 400 Augusta Street Suite 100 Greenville, SC 29601 864.214.8750

TECHNICAL MEMORANDUM

December 9, 2024 File No. 132892-102

SUBJECT: Statistical Evaluation of the July 2024 Semiannual Corrective Action Groundwater

Monitoring Data, Winyah Generating Station, Ash Pond B

Pursuant to Title 40 Code of Federal Regulations (40 CFR) §257.93, §257.95, and §257.98 (Rule), this memorandum summarizes the statistical evaluation of the groundwater analytical results obtained from the July 2024 semiannual corrective action groundwater monitoring event for Winyah Generating Station (WGS) Ash Pond B. Data for this groundwater sampling event were validated on October 9, 2024 by Santee Cooper and provided to Haley & Aldrich.

BACKGROUND

Coal combustion residual (CCR) and non-CCR wastewater inflows to WGS Ash Pond B ceased prior to the regulatory deadline of April 11, 2021. The unit is undergoing closure-by-removal as outlined in the Remedy Selection Report dated March 30, 2022. During previous groundwater sampling events, assessment monitoring identified the presence of arsenic, lithium, and molybdenum in one or more downgradient wells at a statistically significant level (SSL) above the Groundwater Protection Standards (GWPS).

Recent analytical testing results were evaluated to ascertain if SSLs exist above GWPS for Appendix IV groundwater monitoring constituents. Using interwell evaluations, data from the semiannual sampling event for downgradient monitoring wells were compared to the GWPS established from background well data.

STATISTICAL EVALUATION

The Rule provides four specific options to statistically evaluate whether water quality downgradient of the CCR Unit (§257.93(f) (1-4)) represents a SSL of Appendix IV parameters above the GWPS. The selected statistical method used for these evaluations is the tolerance limit (TL) as certified by Haley & Aldrich, Inc. on October 14, 2017.

An interwell evaluation was used for statistical analysis, which compares the most recent values from downgradient compliance wells against a background dataset composed of upgradient well data. The TL method was used to evaluate potential SSLs above GWPS. The GWPS for each of the Appendix IV constituents has been set equal to the highest value of the maximum contaminant level, regional screening level (RSL), or site background concentration. Compliance well data from the most recent groundwater sampling event were compared to the corresponding GWPS to determine if a SSL existed. Statistical analysis results are presented in Table 1.

South Carolina Public Service Authority (Santee Cooper) December 9, 2024 Page 2

As part of the TL procedure, a concentration limit for each constituent is established from the distribution of the background data with a minimum 95 percent confidence level. The upper endpoint of a tolerance interval is called the upper tolerance limit (UTL). Depending on the assumed distribution of background, parametric or non-parametric procedures were used to develop the UTL. Parametric procedures use assumed distributions of the sample background data to development the limits, whereas non-parametric limits use order statistics or bootstrap methods. If all the background data are non-detect, a maximum reporting limit may serve as an appropriate UTL.

If an Appendix IV constituent concentration from the event was above the GWPS, the lower confidence limit (LCL) for the downgradient well constituent was used to evaluate the presence of a SSL. The LCL is the lower end of the confidence interval range, which is an estimated concentration range intended to contain the true mean or median of the population from which the sample is drawn. The confidence interval range is designed to locate the true population mean or median with a high degree of statistical confidence.

After testing for outliers, the UTLs were calculated from the background dataset to evaluate whether removal of data was necessary based on sampling or measurement discrepancies. Both visual and statistical outlier tests for the background data were performed. A visual inspection of the data was performed using distribution plots for the downgradient sample data. Based on our review, no sample data were identified as outliers that warranted removal from the dataset.

The background well (WAP-1 and WBW-1) analytical results from previous events were combined to calculate the UTL for each detected Appendix IV constituent. Variability and distribution of the pooled dataset were reviewed to establish the method for UTL calculation.

Per the document Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities, Unified Guidance, March 2009 (the Unified Guidance), background concentrations were based on statistical evaluation of analytical results collected through July 2023 and updated in the Chemstat output. The background dataset will be updated in Table 1 again after four additional data points are collected (second semiannual event of 2025) in accordance with the Unified Guidance.

TREND ANALYSIS

Mann-Kendall trend analyses were performed on datasets of sufficient sample size. Results of the trend analysis are included on Table 1. In summary, each well with analyzed trends is identified as stable or decreasing for the compliance wells. It is important to note that increasing trends are not part of the comparison criteria for triggering a SSL. Trend analysis will continue to be used to monitor and evaluate concentrations in the context of overall site conditions.

RESULTS OF APPENDIX IV DOWNGRADIENT STATISTICAL COMPARISONS

As stated, Appendix IV constituent detections from downgradient well samples were compared to their respective GWPS (Table 1). Based on previous compliance sampling data and statistical evaluations, interwell comparisons were used.

South Carolina Public Service Authority (Santee Cooper) December 9, 2024 Page 3

Consistent with previous results, arsenic has one SSL above the GWPS.

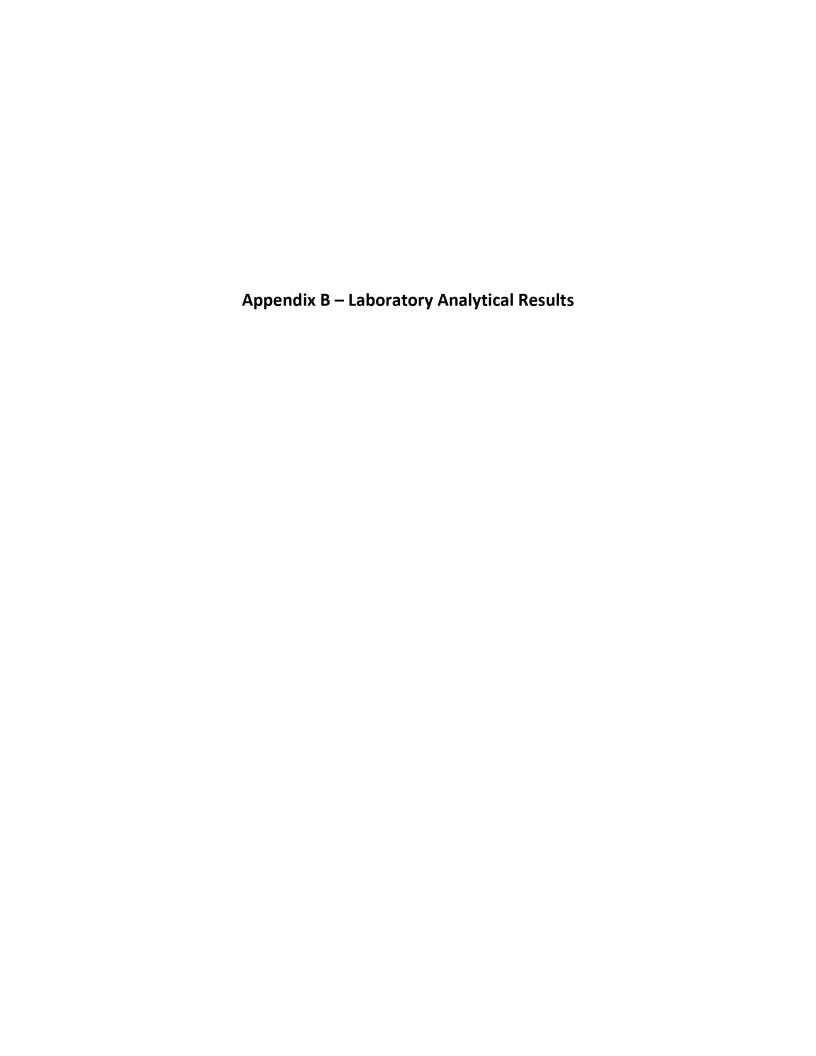
Arsenic SSL at WAP-27

As noted in the second 2022 semiannual statistical memorandum, monitoring well WAP-27, which is constructed with a deeper screened zone, was integrated by Santee Cooper as a temporary substitute for WAP-20 until the water table is restored to historical levels.

As noted by the lack of lithium and/or molybdenum SSLs during 2024 sampling events, which have been identified previously, concentrations continue to decrease. Concentrations are expected to continue to decrease once closure is complete and equilibrium groundwater conditions are restored; however, until then, some variability in the data is expected. The expected date for completing CCR removal for Ash Pond B is first quarter of 2025. Groundwater trends will continue to be monitored during future sampling events.

Enclosures:

Table 1 - WGS Ash Pond B July 2024 Corrective Action Monitoring Data



TABLE

	ă		West 1976	No No	No			No No	Yes			No	No	No			No	No No			No	No.	2		Mo	No	No			No	No No			No	No	No		Mo	No.	No			No	N N			No	No	No			No	No No
1	Background at Individual Well			z 2	z			2 2	>			2	2	н			2 1	2 22			И	z i			2	z	х			z	2 2			×	z	H.		ŀ	×	. N			H	2 2				N.	-			×	2 2
	GWPS (Higher of MCL/RS), or Background Limit)	2000	57000			0.000	O.C.				2000					0000				5000				0.300					8000				4.00				2100					0,040				0.0020					0.10		
r-well Analysis	8			2 2	и			2 2	-			>	2	И			2 2	2 2			Z	2 1	z.		31	×	z.			z	2 2			z	z			2	z	N			>	= >			×	z	×			z	2 2
Inte	Upper Tolerance Limit	3000	czóno			0	0.000				960'0				-	0.0003				0.0005				0,0050					0.0084				0.140				00000					0.012				0.0002					0500		
	20156								6700																																		0.023										
	Detect?			2 2	٨			2 2				٠					2 1	E 16			z	ze .			-	z	н			z				×	2	٨				H			٨	2 >			-	и	н			2	= =
	Any 2024 Concentration			0.005	9000			0.005	0.122			0.390	0.045	0.090			\$0000	0.0000			0.0005	50000	0.0000		0 000	0.005	0.005			90000	90000			0.100	0.100	0.350		0.001	0.003	0.001			0.071	0.005			0.0002	0.0002	0.0002			0.005	0.005
	Distribution	1	E.				Lan		Normal		Man-juramentic					HAN				MA				NA					могоризтеях				Non-parametric									Non-parametric				NA					NA		
	Trend	NA	NA	NA AN		MA	MA	Decreasing	Stable		Stable	Stable	Decreasing	Stable	VV	814	VIV.	NA NA		All All	713	NA.		MA	NA.	NA.	14.6	Increasing	Increasing	MA	MA		188	V2 V2	707	Stable	W.	NA	NA.	WW	777	WW	Stable	Stable		W	NA NA	NA.	NA.	NA.	70.0	959	14.
	Outler Removed		184	NA NA		MA	No.	III	. Ou		100	No.	No	Ma	NA	NA	NA	NA NA		NA NA	NX	104		Mit	NA.	NA	100	- 4	100	NA	No.		101	No.	MA		NA	No.	Pint.			Nec	960	2 2		No.	NA	MA	194		NO.	MA	164
	Outlier Presence Ou		NA	NA MA	100	NA		Yes Yes	100		Title .	00 101	Yes	tto	MA	NIA	NA 1	NA NA		NA NA	MA	NA I	- 1 K	940	NA	MA	PSA.		940	MA	10 10		No	Mo	NA		NA	111	799		- 12	, first	No	No.		No	NA NA	NA	NO.		NA.	N/A	NA NA
-	Non-Detection Exceedances				0	0	0	0 -	. 0		0	0 0		0	0	0	0 .	. 0		0 0	0	0 0		0	0 0	0	0	0	0	0	-1 0		0	0 0	0	0	0	0 0	0 0	0		0	0	0 0		0 0	0 0	0	0	c		0	0 0
																																						_													-		
	nces Detection	0	0	0 0	0	0	0	œ C			0	0 0	0	0	0	0	0 0	0 0		0 0	0	0 0	0	0	0 0	0	0	1	0	0	0 0		0	0 0	0	0	0	0 0	0	0	0	0	s	0 0		0 0	0	0	0	0	0	0	0 0
	t Exceedances (Y/N)		z		z	×	×	> 2			2	2 2	z	2	2	z	2 2			zz	2	z :		2	2 2	×	z	*	2	z	z z		Z :	z z	2	2	N	2 2	z .	z	2	z	>	2 2		2 1	2 2	z	×	2		z	2 2
	St. Unit		me/L				Ĩ	Mg/m			Mg/l	me/i	mg/l	mg/k	I mg/L			mg/L		Mg/L				mg/L	5 6	H	mg/L			S mg/L	T		mg/L	Mg/m	MgM	NA.		Ŧ	Mell I		meß		Ì	mg/L				T mg/L					TAPE TAPE
	e MCL/ISL			9000				100			24	7 2					-	0.004		0.005						0.1				9000			*	4 4	*	*		0.015						000		000	0.002	0.00	0.00				0.1
	Coefficient of Variance			1.353				1584	╀			0.1308		0.105	0	0	+	0		0 0		+		0	0 0	1339	0	1.476		Н	ľ				0		1708	+	1303		0.217	H		0.3338		0 0	0	0	0	08203	H	Н	0.3307
8	Standard	0.001472		0.004808		0.000117		0.000	1	mg/J)	1	0.03501	H	0.0115	0	0	0 00 00	0		0 0		00	(mg/r)	0	0 0	ő	0	mg/L)			0.0000077			0.0105	Н	0.05322	14 0.001667	9 0.001974		0.0005669	mg/l.			8 0.001871	(m/s/1)	0 0	0 0	۰	0 1000	9 0.000949			
	Variance	Antimony, Total (mg/L) 0.00002	0.00002077	0.00002311	0.00000007	8.312E-07	0.000002312	0.001632	0.0002498	Barlum, Total (0.0001319	0.001296	0.0009038	0.0001322	0	0	0	0	andle-W: Cadmium, Total (mg/L)	0 0	0	0.000001125	ndx-IV: Onomium, Total (mg/L)	0	0 0	0.0001389	0	0.000003105	1.373£-07	0	5,9298-09	CCR Appendix-IV: Fluoride (mg/l)	0	0.0001221	0	O.00069	0.000007114	0.000003899	0.000008981	3.214E-07	Uthium, Total (m	0.000004889	0.0002424	0.00001024	2	0	0 0	0	0	0 00000009	0.0000046	0.0000046	0.000000000
2000	Maximum Detect	CCR Appendix-IV:			0.0057	CK Appendix 1V	9600'0	0.14	0.122	CCR Appendix-N: Barlum, Total (mg/l.)	0.0534	0.396	0.15	0.123 0.0001322	and the same of th				CCR Appendix-IV:				CCR Appendix-IV:	0.005		96200		CCX Appendix-IV: Cobalt, Total (mg/l.) 0.00838 0.00003105	91000		0.000581	CCR Appendix	0.1	0.14		CCB Amounthut		0.00456	110.0		CCR Appendis-M: Lithium, Total (mg/L)	0,0116	90000	00200	CCR Appendix-IV: A	0,0002			Annual Miles	COR Appendix-IV: Molybdenum, Total (mg/L) 0.00008009 0.00			
0.00	95th Percentile		9000	0.02875			0.00847	0.131	0.115		0.04338	0.061	0.1085		00000	50000	00000	0.0000		0.0005	90000	0.001175		0.005	0.005	0.03266	0.005	0.003108	0.001495	0.0005	0.0004866		0.1	0.127	0.1	0.29	10.0	0.004354	0.01015			100	0.06533	0.01474		0,0002	0.0002	0.0002			100	100	100
2000	(Median)	900'0	900.0	0,005	0.005	0.005	0.005	0.00525	0,0883		0.015	0.04335	0.04765	0.113	00000	50000	00000	00000		00000	50000	90000	00000	0.005	0.005	0.005	0.005	00000	00000	0,0005	00000		0.1	0.1	0.1	0.1	0.001	0.001	1000	0.001	100	100	970'0	0.0037		0,0002	0,0002	0,0002	00000	0.01	100	0.01	100
	Mean	900'0	0.00585	0.00594	0.0051	0.00445	0.00542	0.00255	71600		0.0182	0.275	0.065	0.109	50000	5000'0	0,0005	0,0005		0.0005	90000	0.00075	00000	0.005	0.005	0.00887	9000	0.00119	0.000718	90000	0.000544		0.1	0.103	1.0	0.143	0.00221	0.00193	0.00248	0.00121	0.00000	0.00894	0.0331	0.00959		0,0002	0,0002	0.0002	0,0002	60100	0.00886	0.00686	0.00571
	Range of Non-Detect	3005-0-025	3,002-0,025	0.002-0.05	3,005-0,005	3,003-0,005	9003-0.005	3,003,0,005							00005-0.0005	90005-0:0005	00005-0-0005	00005-00000		00005-0-0005	90005-0:0009	0.0005-0.005	5000 10-50000	2005-0:005	3005-0.005	900-9000	9002-0000	90005-0-0000		H	2,0005-0.01		0.10.1	0101	0.10.1	0101	0.001-0.01	0.001-0.01	0.001-0.01	0.001-0.0025	0.005.001	0.005-0.01		0.005-0.01		00002-0.0002	00002-0-0002	00002-0:0002	00002-0.0002	0.05.0.05	0.005-0.01	100-5000	0.005-0.05
8)	Non-Detects Ru	100%	100%	100%	86%	100%	75%	50%	36		8	6 8	760	ř	100%	100%	100%	100%		100%	100%	100%	100%	95%	100%	N.K.	100%	X89	3655	100%	36%		36%	91%	100%	25	100%	83%	83%	100%	350	95W	8	29%		95%	100%	100%	100%	100%	100%	100%	100%
	Prequency of Detection n	0/30	0/30	81,/0	1/1	0/72	6/34	12/34	1/1		23/23	24/34	22/22	1/1	0/30	0/30	81/0	6/18		0/21	67.73	81/0	1/0	1/21	6/23	1/18	4/0	2012	9/22	0/22	3/22		1/23	272	6/33	3/1	6/21	4/33	3/18	4/0	100	72/1	23/23	1/13		1/30	0/38	81/0	0/1	William	0/22	27/0	0/22
	Location 16	WBW-1	WAP-1	WAP-10	WAR-27	WBW-1	WAP-1	WAP-10	WAP-27		WBW-I	WAP-10	WAD-21	WAP-27	WBW-1	WAP-1	WAP-10	WAD-27		WAP-1	WAP-10	WAP-21	A7-AYM	WBW-1	WAP-I	WAP-21	WAS-27	WBW-1	WAP-1	WAP-10	WAP-21		WBW-I	WAP-10	WAP-21	WAP-27	W8W-I	WAP-1	WAP-21	WAP-27	10000	WAP-1	WAP-10	WAP-21		T-M8M-T	WAP-10	WAP-21	WAP-27	WBW-1	WAP-1	WAP-10	WAP-21 WAP-27

TABLE 1 WGS ASH POND B JULY 2024 CORRECTIVE ACTION MONITORING DATA

			N	N	N				N	N	N				No	
	-	16.6					0000	2000					0000	2000		
			>	Ж	И				н	z	z				×	
	3	2.31					0000	0.000					0000	1000		
			4.33													
															11	
				2.740	2.73				0.01	0.010	0.01				0.001	
		Mon-parametric	Normal				40.6									
	Stable	Stable	Stable	Decreasing	Stable		MA	NIA.	MA	24.4	14.5		NA.	MA	24.4	
	his	No	No	184	Nes		MA	344	MA	NA	164		106	MA	NA	
	- No	940	Man	No	Yes		NA	Not	100	NA	NA		101	100	NA	
	0	0	0	0	0		0	0	0	0	0		0	0	0	
	0	4	13	2	0		0	0	0	0	0		0	0	0	
	z	,	>	*	z		z	z	z	z	z		z	z	z	
	DC/II	POW	DC//L	DOM	1/Od		mg/L	mg/L	mg/l.	mg/L	mg/L		mg/L	mg/L	ms/l.	
	'n	w	w	ın	10		0.05	0.05	0.05	0.05	0.05		0.002	0.002	0.002	
	0.4955	0.4683	03307	0.5314	03129		0.4172	0.38	0.38	0.4291	03703		0	0.2107	0	
DQ/II	1.466	1.364	161	1,628	0.6144	W/A	0.001718	0.00409	0.00409	0.001483	67910010	575	۰	0.0002012	0	
CCR Appendix-Rr: Radium-226 & 228 (pCI/L)	215	2,446	2.661	2.651	0.3898	CCR Appendix-N: Selenium, Total [mg/t]	0.00002226	0.00001672	0.00001672	0.00003007	0.00002143	COR Appendix-IV: Thailium, Total (mg/l.)	0	4.05E-08	0	
OR Appendix-84: R.	4.39	5.97	16.9	295	3.02	CCR Appendix-N:						CCR Appendix-IV:				
0	433	5.705	689	5.037	2.93		0.02	0.02	0.02	0.02075	0.02		0.001	0.001	0.001	
		*	5.485	3.37	1.79		100	100	0.01	100	0.01		0.001	0.001	0.001	
	2.96	334	4.93	306	2		0.0113	80100	80100	0.0128	0.0114		0.001	0.000955	0.001	
	2	1		77			3,0025-0.02	30025-0.02	20025-0.02	3005-0.025	0.01-0.02		1000-0000	0.0001-0.001	10001-0000	
	32%	23%	86	18%	360		100%	100%	100%	100%	100%		100%	100%	100%	
	15/52	17/12	22/22	18/22	1/1		0/21	6/23	0/23	81/0	4/0		0/30	0/30	81/0	
	WBW-1	WAP-1	WAP-10	WAP-21	WAS-27		WBW-1	WAP-1	WAP-10	WAP-21	WAP-27		waw.t	WAP-1	WAP-10	

Appendix B:

Certificates of Analysis, External Lab Reports, & Field Parameters

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF90595

Location: GW Well WAP-1

Date: 02/05/2024

Sample Collector: WJK/BB

Loc. Code WAP-1

Time: 14:35

Loc. Code WAF-1			11me: 14:35		
Analysis	Result	Units	Test Date	Analyst	Method
Aluminum	1.2	mg/L	02/13/2024	SKJACOBS	EPA 6020B
Arsenic	5.6	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Barium	81.0	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Calcium	8.8	mg/L	02/13/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Cobalt	0.84	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Iron	2460	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Magnesium	0.93	mg/L	02/13/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Boron	37.1	ug/L	02/14/2024	SKJACOBS	EPA 6010D
Lithium	<5.0	ug/L	02/14/2024	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	02/14/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	02/20/2024	EUROFINS SAV	EPA 7470
Zinc	<10.0	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Fluoride	<0.10	mg/L	02/14/2024	KCWELLS	EPA 300.0
Chloride	11.6	mg/L	02/14/2024	KCWELLS	EPA 300.0
Sulfate	30.2	mg/L	02/14/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	80.00	mg/L	02/09/2024	KCWELLS	SM 2540C
Radium 226	2.03	pCi/L	03/05/2024	GEL	EPA 903.1 Mod
Radium 228	0.185	pCi/L	02/23/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	2.215	pCi/L	03/21/2024	SJLEVY	EPA 903.1 Mod
pН	4.41	SU	02/05/2024	WJK/BB	
Copper	<5.0	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Nickel	<0.5	ug/L	02/13/2024	SKJACOBS	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date:

Authorized Signature Only- Not Valid Unless Signed

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF90634 Location: GW Well WBW-1 Date: 02/06/2024 Sample Collector: WJK/BB

Loc. Code WBW-1 Time: 14:12

Loc. Gode WDW I			11116. 17.12		
Analysis	Result	Units	Test Date	Analyst	Method
Aluminum	0.42	mg/L	02/13/2024	SKJACOBS	EPA 6020B
Arsenic	<5.0	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Barium	22.3	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Calcium	2.2	mg/L	02/13/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Cobalt	0.88	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Iron	98.7	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Magnesium	0.45	mg/L	02/13/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Boron	185	ug/L	02/14/2024	SKJACOBS	EPA 6010D
Lithium	9.9	ug/L	02/14/2024	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	02/14/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	02/20/2024	EUROFINS SAV	EPA 7470
Zinc	<10.0	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Fluoride	<0.10	mg/L	02/16/2024	KCWELLS	EPA 300.0
Chloride	4.50	mg/L	02/16/2024	KCWELLS	EPA 300.0
Sulfate	10.9	mg/L	02/16/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	75.00	mg/L	02/13/2024	KCWELLS	SM 2540C
Radium 226	0.0320	pCi/L	03/05/2024	GEL	EPA 903.1 Mod
Radium 228	2.16	pCi/L	02/23/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	2.192	pCi/L	03/21/2024	SJLEVY	EPA 903.1 Mod
pH	4.54	SU	02/06/2024	WJK/BM	
Copper	<5.0	ug/L	02/13/2024	SKJACOBS	EPA 6020B
Nickel	1.3	ug/L	02/13/2024	SKJACOBS	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America " - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

Linda Williams - Manager Analytical Services

Authorized Signature Only- Not Valid Unless Signed

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF90604

Location: GW Well WAP-9

Date: 02/07/2024

Sample Collector: WJK/BM

Loc. Code WAP-9 Time: 11:12

Loc. Code WAI -3			Time: 11.12		
Analysis	Result	Units	Test Date	Analyst	Method
Aluminum	0.29	mg/L	02/14/2024	SKJACOBS	EPA 6020B
Arsenic	73.9	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Barium	132	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Calcium	345	mg/L	02/14/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Cobalt	<0.5	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Iron	17300	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Magnesium	56.4	mg/L	02/14/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Boron	4470	ug/L	02/14/2024	SKJACOBS	EPA 6010D
Lithium	123	ug/L	02/14/2024	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	02/14/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	02/20/2024	EUROFINS SAV	EPA 7470
Zinc	<10.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Fluoride	<0.10	mg/L	02/16/2024	KCWELLS	EPA 300.0
Chloride	205	mg/L	02/16/2024	KCWELLS	EPA 300.0
Sulfate	602	mg/L	02/16/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	1702	mg/L	02/09/2024	KCWELLS	SM 2540C
Radium 226	2.13	pCi/L	03/05/2024	GEL	EPA 903.1 Mod
Radium 228	2.17	pCi/L	02/23/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	4.3	pCi/L	03/21/2024	SJLEVY	EPA 903.1 Mod
pH	6.17	SU	02/07/2024	WJK/BM	
Copper	<5.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF90605 Location: GW Well WAP-10

Date: 02/07/2024

Sample Collector: WJK/BM

Loc. Code WAP-10

Time: 10:07

Loc. Code WAF-10			Time: 10:07		
Analysis	Result	Units	Test Date	Analyst	Method
Aluminum	<0.1	mg/L	02/14/2024	SKJACOBS	EPA 6020B
Arsenic	<5.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Barium	286	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Calcium	658	mg/L	02/14/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Cobalt	<0.5	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Iron	21500	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Magnesium	83.5	mg/L	02/14/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	02/20/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B
Boron	10000	ug/L	02/14/2024	SKJACOBS	EPA 6010D
Lithium	65.8	ug/L	02/14/2024	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	02/14/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	02/20/2024	EUROFINS SAV	EPA 7470
Zinc	<10.0	ug/L	02/20/2024	SKJACOBS	EPA 6020B
Fluoride	<0.10	mg/L	02/22/2024	KCWELLS	EPA 300.0
Chloride	784	mg/L	02/22/2024	KCWELLS	EPA 300.0
Sulfate	902	mg/L	02/22/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	3371	mg/L	02/09/2024	KCWELLS	SM 2540C
Radium 226	2.11	pCi/L	03/05/2024	GEL	EPA 903.1 Mod
Radium 228	0.936	pCi/L	02/23/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	3.046	pCi/L	03/21/2024	SJLEVY	EPA 903.1 Mod
pH	6.57	SU	02/07/2024	WJK/BM	
Copper	<5.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America " - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date: 4/15/7

One Riverwood Drive P.O. Box 2946101 Moncks Corner, SC 29461-2901

(843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF90606 Location: GW Well WAP-10 Date: 02/07/2024 Sample Collector: WJK/BM

Loc. Code WAP-10 DUP Time: 10:12

VVAF-10	DUP		11me: 10:12		
	Result	Units	Test Date	Analyst	Method
	<0.1	mg/L	02/20/2024	SKJACOBS	EPA 6020B
	<5.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B
	275	ug/L	02/14/2024	SKJACOBS	EPA 6020B
	<0.5	ug/L	02/20/2024	SKJACOBS	EPA 6020B
	640	mg/L	02/14/2024	SKJACOBS	EPA 6020B
	<0.5	ug/L	02/14/2024	SKJACOBS	EPA 6020B
	<0.5	ug/L	02/14/2024	SKJACOBS	EPA 6020B
	<5.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B
	21000	ug/L	02/14/2024	SKJACOBS	EPA 6020B
	80.6	mg/L	02/14/2024	SKJACOBS	EPA 6020B
	<1.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B
	<5.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B
	<10.0	ug/L	02/20/2024	SKJACOBS	EPA 6020B
	<1.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B
	10200	ug/L	02/14/2024	SKJACOBS	EPA 6010D
	66.7	ug/L	02/14/2024	SKJACOBS	EPA 6010D
	<5.0	ug/L	02/14/2024	SKJACOBS	EPA 6010D
	<0.2	ug/L	02/20/2024	EUROFINS SAV	EPA 7470
	<10.0	ug/L	02/20/2024	SKJACOBS	EPA 6020B
	<0.10	mg/L	02/16/2024	KCWELLS	EPA 300.0
	788	mg/L	02/16/2024	KCWELLS	EPA 300.0
	939	mg/L	02/16/2024	KCWELLS	EPA 300.0
d Solids	3200	mg/L	02/09/2024	KCWELLS	SM 2540C
	1.69	pCi/L	03/05/2024	GEL	EPA 903.1 Mod
	0.147	pCi/L	02/23/2024	GEL	EPA 904.0
28 Combined Calculation	1.837	pCi/L	03/21/2024	SJLEVY	EPA 903.1 Mod
	<5.0	ug/L	02/14/2024	SKJACOBS	EPA 6020B
	d Solids	Result <0.1 <5.0 275 <0.5 640 <0.5 <0.5 <5.0 21000 80.6 <1.0 <5.0 <10.0 <1.0 10200 66.7 <5.0 <0.2 <10.0 <0.10 788 939 d Solids 3200 1.69 0.147 128 Combined Calculation 1.837	Result Units	Result Units Test Date	Result Units Test Date Analyst

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF90618

Location: GW Well WAP-17

Date: 02/13/2024

Sample Collector: WJK/BM

Loc. Code WAP-17

Time: 13:48

Loc. Code WAP-17			11me: 13:48		
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	84.7	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Barium	46.3	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	03/05/2024	SKJACOBS	EPA 6020B
Calcium	331	mg/L	03/01/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Cobalt	<0.5	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Iron	2330	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	03/05/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Boron	3610	ug/L	02/21/2024	SKJACOBS	EPA 6010D
Lithium	75.9	ug/L	02/21/2024	SKJACOBS	EPA 6010D
Molybdenum	17.1	ug/L	02/21/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	02/23/2024	EUROFINS SAV	EPA 7470
Zinc	<10.0	ug/L	03/05/2024	SKJACOBS	EPA 6020B
Fluoride	<0.10	mg/L	02/16/2024	KCWELLS	EPA 300.0
Chloride	169	mg/L	02/16/2024	KCWELLS	EPA 300.0
Sulfate	757	mg/L	02/16/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	1460	mg/L	02/16/2024	KCWELLS	SM 2540C
Radium 226	0.899	pCi/L	03/13/2024	GEL	EPA 903.1 Mod
Radium 228	1.29	pCi/L	03/08/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	2.189	pCi/L	03/21/2024	SJLEVY	EPA 903.1 Mod
pH	6.15	SU	02/13/2024	WJK/BM	
Copper	<5.0	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Nickel	<0.5	ug/L	03/01/2024	SKJACOBS	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

Validation date:

Analysis Validated:

Linda Williams - Manager Analytical Services

Authorized Signature Only- Not Valid Unless Signed

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF90619 Location: GW Well WAP-17 Sample Collector: WJK/BM Date: 02/13/2024

Loc. Code WAP-17 DUP Time: 13:53

LOC. COde WAF-17	DOP		Time: 13.53		
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	84.2	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Barium	46.1	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	03/05/2024	SKJACOBS	EPA 6020B
Calcium	328	mg/L	03/01/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Cobalt	<0.5	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Iron	2320	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	03/05/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Boron	3710	ug/L	02/21/2024	SKJACOBS	EPA 6010D
Lithium	78.2	ug/L	02/21/2024	SKJACOBS	EPA 6010D
Molybdenum	17.6	ug/L	02/21/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	02/23/2024	EUROFINS SAV	EPA 7470
Zinc	<10.0	ug/L	03/05/2024	SKJACOBS	EPA 6020B
Fluoride	<0.10	mg/L	02/16/2024	KCWELLS	EPA 300.0
Chloride	162	mg/L	02/16/2024	KCWELLS	EPA 300.0
Sulfate	725	mg/L	02/16/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	1538	mg/L	02/16/2024	KCWELLS	SM 2540C
Radium 226	0.878	pCi/L	03/13/2024	GEL	EPA 903.1 Mod
Radium 228	0.681	pCi/L	03/08/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.559	pCi/L	03/21/2024	SJLEVY	EPA 903.1 Mod
Copper	<5.0	ug/L	03/01/2024	SKJACOBS	EPA 6020B
Nickel	<0.5	ug/L	03/01/2024	SKJACOBS	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Validation date: Linda Williams - Manager Analytical Services

One Riverwood Drive P.O. Box 2946101 Moncks Corner, SC 29461-2901 (843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF90620 Location: GW Well WAP-18 Date: 02/12/2024

Time: 12:45

Sample Collector: WJK/BM

Loc. Code WAP-18			Time: 12:45		
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	137	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Barium	81.7	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	02/21/2024	SKJACOBS	EPA 6020B
Calcium	69	mg/L	02/29/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Cobalt	0.58	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Iron	1170	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Boron	799	ug/L	02/20/2024	SKJACOBS	EPA 6010D
Lithium	84.6	ug/L	02/20/2024	SKJACOBS	EPA 6010D
Molybdenum	158	ug/L	02/20/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	02/26/2024	EUROFINS SAV	EPA 7470
Zinc	<10.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Fluoride	<0.10	mg/L	02/16/2024	KCWELLS	EPA 300.0
Chloride	29.3	mg/L	02/16/2024	KCWELLS	EPA 300.0
Sulfate	132	mg/L	02/16/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	357.5	mg/L	02/16/2024	KCWELLS	SM 2540C
Radium 226	0.591	pCi/L	03/13/2024	GEL	EPA 903.1 Mod
Radium 228	0.211	pCi/L	03/08/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	0.802	pCi/L	03/21/2024	SJLEVY	EPA 903.1 Mod
pH	5.75	SU	02/12/2024	WJK/BM	

ug/L

ug/L

Comments:

Copper

Nickel

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

<5.0

0.80

Validation date:

02/29/2024

02/29/2024

SKJACOBS

SKJACOBS

EPA 6020B

EPA 6020B

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF90621

Location: GW Well WAP-19

Date: 02/08/2024

Sample Collector: WJK/BM

Loc. Code WAP-19

Time: 11:05

Loc. Gode Will 10			Time. 11.00		
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	124	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Barium	57.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	02/21/2024	SKJACOBS	EPA 6020B
Calcium	646	mg/L	02/29/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Cobalt	12.1	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Iron	20700	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Boron	4320	ug/L	02/20/2024	SKJACOBS	EPA 6010D
Lithium	1450	ug/L	02/20/2024	SKJACOBS	EPA 6010D
Molybdenum	36.9	ug/L	02/20/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	02/20/2024	EUROFINS SAV	EPA 7470
Zinc	23.2	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Fluoride	0.19	mg/L	02/16/2024	KCWELLS	EPA 300.0
Chloride	56.7	mg/L	02/16/2024	KCWELLS	EPA 300.0
Sulfate	1800	mg/L	02/16/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	2871	mg/L	02/09/2024	KCWELLS	SM 2540C
Radium 226	0.922	pCi/L	03/13/2024	GEL	EPA 903.1 Mod
Radium 228	1.78	pCi/L	03/08/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	2.702	pCi/L	03/21/2024	SJLEVY	EPA 903.1 Mod
рН	5.89	SU	02/08/2024	WJK/BM	
Copper	<5.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Nickel	10.5	ug/L	02/29/2024	SKJACOBS	EPA 6020B

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc. - Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc. - Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date: 4//5/24

One Riverwood Drive P.O. Box 2946101 Moncks Comer, SC 29461-2901

(843) 761-8000

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF90623 Location: GW Well WAP-21 Date: 02/15/2024 Sample Collector: WJK/BM

Loc. Code WAP-21 Time: 12:20

Loc. Jode Will 21			1111le. 12.20		
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	5.5	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Barium	38.8	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	03/05/2024	SKJACOBS	EPA 6020B
Calcium	102	mg/L	02/29/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Cobalt	<0.5	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Lead	1.2	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Boron	3160	ug/L	02/26/2024	SKJACOBS	EPA 6010D
Lithium	<5.0	ug/L	02/26/2024	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	02/26/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	02/26/2024	EUROFINS SAV	EPA 7470
Fluoride	<0.10	mg/L	02/23/2024	KCWELLS	EPA 300.0
Chloride	60.6	mg/L	02/23/2024	KCWELLS	EPA 300.0
Sulfate	3.15	mg/L	02/23/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	572.5	mg/L	02/23/2024	KCWELLS	SM 2540C
Radium 226	0.581	pCi/L	03/17/2024	GEL	EPA 903.1 Mod
Radium 228	1.67	pCi/L	03/13/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	2.251	pCi/L	03/21/2024	SJLEVY	EPA 903.1 Mod
рН	6.37	SU	02/15/2024	WJK/BM	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date:

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AF90624

Location: GW Well WAP-22

Date: 02/12/2024

Sample Collector: WJK/BM

Loc. Code WAP-22

Time: 11:47

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Barium	76.4	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	02/21/2024	SKJACOBS	EPA 6020B
Boron	1440	ug/L	02/20/2024	SKJACOBS	EPA 6010D
Calcium	197	mg/L	02/29/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Cobalt	<0.5	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Lithium	14.9	ug/L	02/20/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	02/26/2024	EUROFINS SAV	EPA 7470
Molybdenum	<5.0	ug/L	02/20/2024	SKJACOBS	EPA 6010D
Lead	<1.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Radium 226	1.35	pCi/L	03/13/2024	GEL	EPA 903.1 Mod
Radium 228	-0.535	pCi/L	03/08/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.35	pCi/L	03/13/2024	SJLEVY	EPA 903.1 Mod
Fluoride	<0.10	mg/L	02/16/2024	KCWELLS	EPA 300.0
Chloride	146	mg/L	02/16/2024	KCWELLS	EPA 300.0
Sulfate	153	mg/L	02/16/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	862.5	mg/L	02/16/2024	KCWELLS	SM 2540C
pH	6.93	SU	02/12/2024	WJK/BM	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Lindal Illians

Final Validation Date:

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AF90625

Location: GW Well WAP-23

Date: 02/15/2024

Sample Collector: WJK/BM

Loc. Code WAP-23

Time: 10:35

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	696	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Barium	201	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	03/05/2024	SKJACOBS	EPA 6020B
Boron	6360	ug/L	02/26/2024	SKJACOBS	EPA 6010D
Calcium	411	mg/L	02/29/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Cobalt	<0.5	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Lithium	376	ug/L	02/26/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	02/26/2024	EUROFINS SAV	EPA 7470
Molybdenum	<5.0	ug/L	02/26/2024	SKJACOBS	EPA 6010D
Lead	<1.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B
Radium 226	1.74	pCi/L	03/17/2024	GEL	EPA 903.1 Mod
Radium 228	1.53	pCi/L	03/13/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	3.27	pCi/L	03/21/2024	SJLEVY	EPA 903.1 Mod
Fluoride	0.34	mg/L	02/23/2024	KCWELLS	EPA 300.0
Chloride	387	mg/L	02/23/2024	KCWELLS	EPA 300.0
Sulfate	589	mg/L	02/23/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	1890	mg/L	02/23/2024	KCWELLS	SM 2540C
рН	6.67	SU	02/15/2024	WJK/BM	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Willians

Final Validation Date:

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AF90626

Location: GW Well WAP-24

Date: 02/19/2024

Sample Collector: WJK/BM

Loc. Code WAP-24

Time: 12:49

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Barium	<5.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Boron	134	ug/L	02/26/2024	SKJACOBS	EPA 6010D
Calcium	67.9	mg/L	03/06/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Cobalt	<0.5	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Lithium	<5.0	ug/L	02/26/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	02/28/2024	EUROFINS SAV	EPA 7470
Molybdenum	<5.0	ug/L	02/26/2024	SKJACOBS	EPA 6010D
Lead	<1.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Radium 226	0.563	pCi/L	03/17/2024	GEL	EPA 903.1 Mod
Radium 228	-0.867	pCi/L	03/13/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	0.563	pCi/L	03/21/2024	SJLEVY	EPA 903.1 Mod
Fluoride	<0.10	mg/L	02/23/2024	KCWELLS	EPA 300.0
Chloride	60.2	mg/L	02/23/2024	KCWELLS	EPA 300.0
Sulfate	11.0	mg/L	02/23/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	345.0	mg/L	02/23/2024	KCWELLS	SM 2540C
pH	7.50	SU	02/19/2024	WJK/BM	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America " - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

leans

Final Validation Date:

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AF90627

Location: GW Well WAP-25

Date: 02/19/2024

Sample Collector: WJK/BM

Loc. Code WAP-25

Time: 11:05

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Barium	8.7	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Boron	23.7	ug/L	02/26/2024	SKJACOBS	EPA 6010D
Calcium	66.6	mg/L	03/06/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Cobalt	<0.5	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Lithium	<5.0	ug/L	02/26/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	02/28/2024	EUROFINS SAV	EPA 7470
Molybdenum	<5.0	ug/L	02/26/2024	SKJACOBS	EPA 6010D
Lead	<1.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Radium 226	1.72	pCi/L	03/17/2024	GEL	EPA 903.1 Mod
Radium 228	-0.281	pCi/L	03/13/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.72	pCi/L	03/21/2024	SJLEVY	EPA 903.1 Mod
Fluoride	<0.10	mg/L	02/23/2024	KCWELLS	EPA 300.0
Chloride	10.9	mg/L	02/23/2024	KCWELLS	EPA 300.0
Sulfate	9.01	mg/L	02/23/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	257.5	mg/L	02/23/2024	KCWELLS	SM 2540C
pH	7.12	SU	02/19/2024	WJK/BM	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Final Validation Date:

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AF90628

Location: GW Well WAP-26

Date: 02/19/2024

Sample Collector: WJK/BM

Loc. Code WAP-26

Time: 09:44

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Barium	28.9	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Boron	19.0	ug/L	02/26/2024	SKJACOBS	EPA 6010D
Calcium	16.7	mg/L	03/06/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Cobalt	<0.5	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Lithium	<5.0	ug/L	02/26/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	02/28/2024	EUROFINS SAV	EPA 7470
Molybdenum	<5.0	ug/L	02/26/2024	SKJACOBS	EPA 6010D
Lead	<1.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Radium 226	0.853	pCi/L	03/17/2024	GEL	EPA 903.1 Mod
Radium 228	-5.48	pCi/L	03/13/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	0.853	pCi/L	03/21/2024	SJLEVY	EPA 903.1 Mod
Fluoride	<0.10	mg/L	02/23/2024	KCWELLS	EPA 300.0
Chloride	11.1	mg/L	02/23/2024	KCWELLS	EPA 300.0
Sulfate	37.0	mg/L	02/23/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	100.0	mg/L	02/23/2024	KCWELLS	SM 2540C
pH	4.85	SU	02/19/2024	WJK/BM	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Lindal Wellians

Final Validation Date:

SANTEE COOPER ANALYTICAL SERVICES **CERTIFICATE OF ANALYSIS** LAB CERTIFICATION #08552

Sample # AF90629

Location: GW Well WAP-26

Date: 02/19/2024

Sample Collector: WJK/BM

Loc. Code WAP-26

DUP

Time: 09:49

DI	UPe. serve				
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Barium	27.1	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Boron	18.0	ug/L	02/26/2024	SKJACOBS	EPA 6010D
Calcium	15.9	mg/L	03/06/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Cobalt	<0.5	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Lithium	<5.0	ug/L	02/26/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	02/28/2024	EUROFINS SAV	EPA 7470
Molybdenum	<5.0	ug/L	02/26/2024	SKJACOBS	EPA 6010D
Lead	<1.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	03/06/2024	SKJACOBS	EPA 6020B
Radium 226	0.741	pCi/L	03/17/2024	GEL	EPA 903.1 Mod
Radium 228	0.0686	pCi/L	03/13/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	0.8096	pCi/L	03/21/2024	SJLEVY	EPA 903.1 Mod
Fluoride	<0.10	mg/L	02/23/2024	KCWELLS	EPA 300.0
Chloride	11.0	mg/L	02/23/2024	KCWELLS	EPA 300.0
Sulfate	37.5	mg/L	02/23/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	88.75	mg/L	02/23/2024	KCWELLS	SM 2540C

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Final Validation Date:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF90630 Location: GW Well WAP-27 Date: 02/15/2024 Sample Collector: WJK/BM

Loc. Code WAP-27 Time: 11:25

LOC. Code VV/(I -Z/	Time, 11.25						
Analysis	Result	Units	Test Date	Analyst	Method		
Arsenic	93.2	ug/L	02/29/2024	SKJACOBS	EPA 6020B		
Barium	99.8	ug/L	02/29/2024	SKJACOBS	EPA 6020B		
Beryllium	<0.5	ug/L	03/05/2024	SKJACOBS	EPA 6020B		
Calcium	116	mg/L	02/29/2024	SKJACOBS	EPA 6020B		
Cadmium	<0.5	ug/L	02/29/2024	SKJACOBS	EPA 6020B		
Cobalt	<0.5	ug/L	02/29/2024	SKJACOBS	EPA 6020B		
Chromium	<5.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B		
Lead	<1.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B		
Antimony	<5.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B		
Selenium	<10.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B		
Thallium	<1.0	ug/L	02/29/2024	SKJACOBS	EPA 6020B		
Boron	2330	ug/L	02/26/2024	SKJACOBS	EPA 6010D		
Lithium	8.58	ug/L	02/26/2024	SKJACOBS	EPA 6010D		
Molybdenum	<5.0	ug/L	02/26/2024	SKJACOBS	EPA 6010D		
Mercury	<0.2	ug/L	02/26/2024	EUROFINS SAV	EPA 7470		
Fluoride	0.10	mg/L	02/23/2024	KCWELLS	EPA 300.0		
Chloride	148	mg/L	02/23/2024	KCWELLS	EPA 300.0		
Sulfate	85.2	mg/L	02/23/2024	KCWELLS	EPA 300.0		
Total Dissolved Solids	715.0	mg/L	02/23/2024	KCWELLS	SM 2540C		
Radium 226	1.74	pCi/L	03/17/2024	GEL	EPA 903.1 Mod		
Radium 228	-2.47	pCi/L	03/13/2024	GEL	EPA 904.0		
Radium 226/228 Combined Calculation	1.74	pCi/L	03/21/2024	SJLEVY	EPA 903.1 Mod		
pH	6.31	SU	02/15/2024	WJK/BM			

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF98788

Location: GW Well WAP-10

Date: 05/02/2024

Sample Collector: WJK/BM

Loc. Code WAP-10

Time: 11:39

Analysis	Result	Units	Test Date	Analyst	Method
Lithium	61.1	ug/L	05/16/2024	SKJACOBS	EPA 6010D
рН	6.65	SU	05/02/2024	JK	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc. - Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF98789

Location: GW Well WAP-19

Date: 05/02/2024

Sample Collector: WJK/BM

Loc. Code WAP-19

Time: 13:40

Analysis	Result	Units	Test Date	Analyst	Method
Cobalt	4.3	ug/L	05/09/2024	SKJACOBS	EPA 6020B
Lithium	988	ug/L	05/16/2024	SKJACOBS	EPA 6010D
рН	6.05	SU	05/02/2024	JK	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America " - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-

Validation date:

Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AF98790

Location: GW Well WAP-23

Date: 05/02/2024

Sample Collector: WJK/BM

Loc. Code WAP-23

Time: 14:26

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	666	ug/L	05/09/2024	SKJACOBS	EPA 6020B
Lithium	341	ug/L	05/16/2024	SKJACOBS	EPA 6010D
pH	6.60	SU	05/02/2024	JK	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America " - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG03721 Location: GW Well WAP-1 Date: 07/01/2024 Sample Collector: ZM/BM

Loc. Code WAP-1 Time: 10:53

			1111101 10100		
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	9.6	ug/L	07/19/2024	SKJACOBS	EPA 6020B
Barium	68.1	ug/L	07/19/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	07/22/2024	SKJACOBS	EPA 6020B
Calcium	7.5	mg/L	07/19/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	07/19/2024	SKJACOBS	EPA 6020B
Cobalt	0.75	ug/L	07/19/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	07/19/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	07/19/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	07/19/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	07/19/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	07/19/2024	SKJACOBS	EPA 6020B
Boron	30.4	ug/L	07/19/2024	SKJACOBS	EPA 6010D
Lithium	<5.0	ug/L	07/19/2024	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	07/19/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	07/19/2024	EUROFINS SAV	EPA 7470
Fluoride	<0.10	mg/L	07/08/2024	KCWELLS	EPA 300.0
Chloride	9.26	mg/L	07/08/2024	KCWELLS	EPA 300.0
Sulfate	30.8	mg/L	07/08/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	70.00	mg/L	07/03/2024	KRMATHER	SM 2540C
Radium 226	2.13	pCi/L	08/07/2024	GEL	EPA 903.1 Mod
Radium 228	2.16	pCi/L	08/02/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	4.29	pCi/L	08/14/2024	SJLEVY	EPA 903.1 Mod
pH	4.42	SU	07/01/2024	ZM/BM	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date: 9/30/2

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG03766 Location: GW Well WBW-1 Date: 07/01/2024 Sample Collector: ZM/BM

Loc. Code WBW-1 Time: 09:54

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Barium	12.9	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Calcium	1.8	mg/L	07/23/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Cobalt	0.54	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Boron	13.2	ug/L	07/18/2024	SKJACOBS	EPA 6010D
Lithium	<5.0	ug/L	07/18/2024	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	07/18/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	07/22/2024	EUROFINS SAV	EPA 7470
Fluoride	<0.10	mg/L	07/12/2024	KCWELLS	EPA 300.0
Chloride	4.92	mg/L	07/12/2024	KCWELLS	EPA 300.0
Sulfate	7.22	mg/L	07/12/2024	KCWELLS	EPA 300.0
Total Dissolved Solids	<25	mg/L	07/03/2024	KRMATHER	SM 2540C
Radium 226	0.102	pCi/L	08/07/2024	GEL	EPA 903.1 Mod
Radium 228	2.41	pCi/L	08/02/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	2.512	pCi/L	08/14/2024	SJLEVY	EPA 903.1 Mod
pH	4.04	SU	07/01/2024	ZM/BM	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

Linda Williams - Manager Analytical Services

- Manager / Mary to ar Oct violes

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG03733 Location: GW Well WAP-9 Date: 07/02/2024 Sample Collector: ZM/BM

Loc. Code WAP-9 Time: 15:15

2001 0000 111111 0	Time. 10.10						
Analysis	Result	Units	Test Date	Analyst	Method		
Arsenic	65.4	ug/L	07/19/2024	SKJACOBS	EPA 6020B		
Barium	110	ug/L	07/19/2024	SKJACOBS	EPA 6020B		
Beryllium	<0.5	ug/L	07/22/2024	SKJACOBS	EPA 6020B		
Calcium	313	mg/L	07/19/2024	SKJACOBS	EPA 6020B		
Cadmium	<0.5	ug/L	07/19/2024	SKJACOBS	EPA 6020B		
Cobalt	<0.5	ug/L	07/19/2024	SKJACOBS	EPA 6020B		
Chromium	<5.0	ug/L	07/19/2024	SKJACOBS	EPA 6020B		
Lead	<1.0	ug/L	07/19/2024	SKJACOBS	EPA 6020B		
Antimony	<5.0	ug/L	07/19/2024	SKJACOBS	EPA 6020B		
Selenium	<10.0	ug/L	07/19/2024	SKJACOBS	EPA 6020B		
Thallium	<1.0	ug/L	07/19/2024	SKJACOBS	EPA 6020B		
Boron	4180	ug/L	07/19/2024	SKJACOBS	EPA 6010D		
Lithium	84.3	ug/L	07/19/2024	SKJACOBS	EPA 6010D		
Molybdenum	<5.0	ug/L	07/19/2024	SKJACOBS	EPA 6010D		
Mercury	<0.2	ug/L	07/20/2024	EUROFINS SAV	EPA 7470		
Fluoride	<0.10	mg/L	07/08/2024	KCWELLS	EPA 300.0		
Chloride	176	mg/L	07/08/2024	KCWELLS	EPA 300.0		
Sulfate	580	mg/L	07/08/2024	KCWELLS	EPA 300.0		
Total Dissolved Solids	1542	mg/L	07/08/2024	KRMATHER	SM 2540C		
Radium 226	1.40	pCi/L	08/07/2024	GEL	EPA 903.1 Mod		
Radium 228	1.78	pCi/L	08/02/2024	GEL	EPA 904.0		
Radium 226/228 Combined Calculation	3.18	pCi/L	08/14/2024	SJLEVY	EPA 903.1 Mod		
pH	5.83	SU	07/02/2024	ZM/BM			

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date: 9/38/24

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG03735 Location: GW Well WAP-10 Date: 07/10/2024 Sample Collector: ZM/BM

Loc. Code WAP-10 Time: 13:01

EGG. GOGG TITAL 10	Time, 10.01					
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	<5.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Barium	290	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Calcium	667	mg/L	07/23/2024	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Cobalt	<0.5	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Antimony	<5.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Boron	10300	ug/L	07/18/2024	SKJACOBS	EPA 6010D	
Lithium	70.6	ug/L	07/18/2024	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	07/18/2024	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	07/20/2024	EUROFINS SAV	EPA 7470	
Fluoride	<0.10	mg/L	07/19/2024	LCWILLIA	EPA 300.0	
Chloride	868	mg/L	07/19/2024	LCWILLIA	EPA 300.0	
Sulfate	969	mg/L	07/19/2024	LCWILLIA	EPA 300.0	
Total Dissolved Solids	3335	mg/L	07/17/2024	KRMATHER	SM 2540C	
Radium 226	4.84	pCi/L	08/07/2024	GEL	EPA 903.1 Mod	
Radium 228	1.58	pCi/L	08/02/2024	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	6.42	pCi/L	08/14/2024	SJLEVY	EPA 903.1 Mod	
pH	6.47	SU	07/10/2024	ZM/BM		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID# 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID# 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID# 23105001

Validation date:

Analysis Validated:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG03736 Location: GW Well WAP-10 Date: 07/10/2024 Sample Collector: ZM/BM

Loc. Code WAP-10 DUP Time: 13:06

LOC. Code WAIT-10	Time. 13.00					
Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	<5.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Barium	285	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Calcium	655	mg/L	07/23/2024	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Cobalt	<0.5	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Antimony	5.7	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B	
Boron	10700	ug/L	07/18/2024	SKJACOBS	EPA 6010D	
Lithium	72.3	ug/L	07/18/2024	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	07/18/2024	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	07/20/2024	EUROFINS SAV	EPA 7470	
Fluoride	<0.10	mg/L	07/19/2024	LCWILLIA	EPA 300.0	
Chloride	859	mg/L	07/19/2024	LCWILLIA	EPA 300.0	
Sulfate	967	mg/L	07/19/2024	LCWILLIA	EPA 300.0	
Total Dissolved Solids	3350	mg/L	07/17/2024	KRMATHER	SM 2540C	
Radium 226	5.16	pCi/L	08/07/2024	GEL	EPA 903.1 Mod	
Radium 228	4.90	pCi/L	08/02/2024	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	10.06	pCi/L	08/14/2024	SJLEVY	EPA 903.1 Mod	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America " - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date: 9/30/24

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG03748 Location: GW Well WAP-17 Date: 07/15/2024 Sample Collector: ZM/BM

Loc. Code WAP-17 Time: 09:12

	Time: 00.12						
Analysis	Result	Units	Test Date	Analyst	Method		
Arsenic	70.3	ug/L	07/24/2024	SKJACOBS	EPA 6020B		
Barium	48.1	ug/L	07/24/2024	SKJACOBS	EPA 6020B		
Beryllium	<0.5	ug/L	07/24/2024	SKJACOBS	EPA 6020B		
Calcium	315	mg/L	07/24/2024	SKJACOBS	EPA 6020B		
Cadmium	<0.5	ug/L	07/24/2024	SKJACOBS	EPA 6020B		
Cobalt	<0.5	ug/L	07/24/2024	SKJACOBS	EPA 6020B		
Chromium	<5.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B		
Lead	<1.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B		
Antimony	<5.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B		
Selenium	<10.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B		
Thallium	<1.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B		
Boron	4220	ug/L	07/23/2024	SKJACOBS	EPA 6010D		
Lithium	76.9	ug/L	07/23/2024	SKJACOBS	EPA 6010D		
Molybdenum	9.38	ug/L	07/23/2024	SKJACOBS	EPA 6010D		
Mercury	<0.2	ug/L	07/20/2024	EUROFINS SAV	EPA 7470		
Fluoride	<0.10	mg/L	07/22/2024	LCWILLIA	EPA 300.0		
Chloride	240	mg/L	07/22/2024	LCWILLIA	EPA 300.0		
Sulfate	813	mg/L	07/22/2024	LCWILLIA	EPA 300.0		
Total Dissolved Solids	1566	mg/L	07/18/2024	KRMATHER	SM 2540C		
Radium 226	1.34	pCi/L	08/14/2024	GEL	EPA 903.1 Mod		
Radium 228	1.61	pCi/L	08/07/2024	GEL	EPA 904.0		
Radium 226/228 Combined Calculation	2.95	pCi/L	08/19/2024	SJLEVY	EPA 903.1 Mod		
pH	5.78	SU	07/15/2024	ZM/BM			

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date: 9/30/24

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG03749 Location: GW Well WAP-17 Date: 07/15/2024 Sample Collector: ZM/BM

Loc Code WAP-17 DLID Time: 00:17

Loc. Code WAP-17	DUP	DUP Time: 09:17						
Analysis	Result	Units	Test Date	Analyst	Method			
Arsenic	69.7	ug/L	07/24/2024	SKJACOBS	EPA 6020B			
Barium	47.4	ug/L	07/24/2024	SKJACOBS	EPA 6020B			
Beryllium	<0.5	ug/L	07/30/2024	SKJACOBS	EPA 6020B			
Calcium	309	mg/L	07/24/2024	SKJACOBS	EPA 6020B			
Cadmium	<0.5	ug/L	07/24/2024	SKJACOBS	EPA 6020B			
Cobalt	<0.5	ug/L	07/24/2024	SKJACOBS	EPA 6020B			
Chromium	<5.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B			
Lead	<1.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B			
Antimony	5.2	ug/L	07/24/2024	SKJACOBS	EPA 6020B			
Selenium	<10.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B			
Thallium	<1.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B			
Boron	4190	ug/L	07/23/2024	SKJACOBS	EPA 6010D			
Lithium	77.9	ug/L	07/23/2024	SKJACOBS	EPA 6010D			
Molybdenum	9.36	ug/L	07/23/2024	SKJACOBS	EPA 6010D			
Mercury	<0.2	ug/L	07/22/2024	EUROFINS SAV	EPA 7470			
Fluoride	<0.10	mg/L	07/22/2024	LCWILLIA	EPA 300.0			
Chloride	240	mg/L	07/22/2024	LCWILLIA	EPA 300.0			
Sulfate	813	mg/L	07/22/2024	LCWILLIA	EPA 300.0			
Total Dissolved Solids	1604	mg/L	07/18/2024	KRMATHER	SM 2540C			
Radium 226	1.20	pCi/L	08/14/2024	GEL	EPA 903.1 Mod			
Radium 228	0.579	pCi/L	08/07/2024	GEL	EPA 904.0			
Radium 226/228 Combined Calculation	1.779	pCi/L	08/19/2024	SJLEVY	EPA 903.1 Mod			

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date: 1

Analysis Validated:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG03750 Location: GW Well WAP-18 Date: 07/15/2024 Sample Collector: ZM/BM

Loc. Code WAP-18 Time: 11:35

2001 0000 111111 10					
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	117	ug/L	07/24/2024	SKJACOBS	EPA 6020B
Barium	103	ug/L	07/24/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	07/30/2024	SKJACOBS	EPA 6020B
Calcium	75.5	mg/L	07/24/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	07/24/2024	SKJACOBS	EPA 6020B
Cobalt	0.71	ug/L	07/24/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B
Boron	811	ug/L	07/23/2024	SKJACOBS	EPA 6010D
Lithium	80.9	ug/L	07/23/2024	SKJACOBS	EPA 6010D
Molybdenum	210	ug/L	07/23/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	07/22/2024	EUROFINS SAV	EPA 7470
Fluoride	<0.10	mg/L	07/22/2024	LCWILLIA	EPA 300.0
Chloride	46.4	mg/L	07/22/2024	LCWILLIA	EPA 300.0
Sulfate	152	mg/L	07/22/2024	LCWILLIA	EPA 300.0
Total Dissolved Solids	382.5	mg/L	07/18/2024	KRMATHER	SM 2540C
Radium 226	0.949	pCi/L	08/14/2024	GEL	EPA 903.1 Mod
Radium 228	2.42	pCi/L	08/07/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	3.369	pCi/L	08/19/2024	SJLEVY	EPA 903.1 Mod
pH	5.37	SU	07/15/2024	ZM/BM	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

Linda Williams - Manager Analytical Services

Linda Williams - Wanager Analytical oct vices

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG03751 Location: GW Well WAP-19 Date: 07/22/2024 Sample Collector: ZM/BM

Loc. Code WAP-19 Time: 11:47

Analysis	Result	Units	Test Date	Analyst	Method		
Arsenic	147	ug/L	08/08/2024	SKJACOBS	EPA 6020B		
Barium	77.7	ug/L	08/08/2024	SKJACOBS	EPA 6020B		
Beryllium	<0.5	ug/L	08/09/2024	SKJACOBS	EPA 6020B		
Calcium	711	mg/L	08/08/2024	SKJACOBS	EPA 6020B		
Cadmium	<0.5	ug/L	08/08/2024	SKJACOBS	EPA 6020B		
Cobalt	0.89	ug/L	08/08/2024	SKJACOBS	EPA 6020B		
Chromium	<5.0	ug/L	08/08/2024	SKJACOBS	EPA 6020B		
Lead	<1.0	ug/L	08/08/2024	SKJACOBS	EPA 6020B		
Antimony	<5.0	ug/L	08/08/2024	SKJACOBS	EPA 6020B		
Selenium	<10.0	ug/L	08/09/2024	SKJACOBS	EPA 6020B		
Thallium	<1.0	ug/L	08/08/2024	SKJACOBS	EPA 6020B		
Boron	4660	ug/L	07/29/2024	SKJACOBS	EPA 6010D		
Lithium	421	ug/L	07/29/2024	SKJACOBS	EPA 6010D		
Molybdenum	13.4	ug/L	07/29/2024	SKJACOBS	EPA 6010D		
Mercury	<0.2	ug/L	08/01/2024	EUROFINS SAV	EPA 7470		
Fluoride	0.34	mg/L	08/02/2024	GEL	EPA 300.0		
Chloride	31.1	mg/L	08/01/2024	GEL	EPA 300.0		
Sulfate	1810	mg/L	08/02/2024	GEL	EPA 300.0		
Total Dissolved Solids	2891	mg/L	07/24/2024	KRMATHER	SM 2540C		
Radium 226	2.06	pCi/L	08/23/2024	GEL	EPA 903.1 Mod		
Radium 228	2.63	pCi/L	08/13/2024	GEL	EPA 904.0		
Radium 226/228 Combined Calculation	4.69	pCi/L	08/29/2024	SJLEVY	EPA 903.1 Mod		
pH	6.34	SU	07/22/2024	ZM/BM			

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG03754 Location: GW Well WAP-21 Date: 07/15/2024 Sample Collector: ZM/BM

Loc. Code WAP-21 Time: 13:32

Time Total								
Result	Units	Test Date	Analyst	Method				
<5.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B				
44.7	ug/L	07/24/2024	SKJACOBS	EPA 6020B				
<0.5	ug/L	07/24/2024	SKJACOBS	EPA 6020B				
114	mg/L	07/24/2024	SKJACOBS	EPA 6020B				
<0.5	ug/L	07/24/2024	SKJACOBS	EPA 6020B				
0.64	ug/L	07/24/2024	SKJACOBS	EPA 6020B				
<5.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B				
2.5	ug/L	07/24/2024	SKJACOBS	EPA 6020B				
<5.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B				
<10.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B				
<1.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B				
3170	ug/L	07/23/2024	SKJACOBS	EPA 6010D				
<5.0	ug/L	07/23/2024	SKJACOBS	EPA 6010D				
<5.0	ug/L	07/23/2024	SKJACOBS	EPA 6010D				
<0.10	mg/L	07/22/2024	LCWILLIA	EPA 300.0				
98.9	mg/L	07/22/2024	LCWILLIA	EPA 300.0				
<2.00	mg/L	07/22/2024	LCWILLIA	EPA 300.0				
562.5	mg/L	07/17/2024	KRMATHER	SM 2540C				
1.37	pCi/L	08/13/2024	GEL	EPA 903.1 Mod				
1.37	pCi/L	08/07/2024	GEL	EPA 904.0				
2.74	pCi/L	08/19/2024	SJLEVY	EPA 903.1 Mod				
6.24	SU	07/15/2024	ZM/BM					
	<5.0 44.7 <0.5 114 <0.5 0.64 <5.0 2.5 <5.0 <10.0 <1.0 3170 <5.0 <5.0 <0.10 98.9 <2.00 562.5 1.37 1.37 2.74	<5.0	<5.0	<5.0				

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG05587

Location: GW Well WAP-21

Date: 07/16/2024

Sample Collector: ZM/BM

Loc. Code WAP-21

Resample

Time: 14:45

Analysis	Result	Units	Test Date	Analyst	Method

Mercury <0.2 ug/L 07/22/2024 EUROFINS SAV EPA 7470

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date: 12/17/24

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG03755 Location: GW Well WAP-22 Date: 07/15/2024 Sample Collector: ZM/BM

Loc. Code WAP-22 Time: 12:26

Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	<5.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B	
Barium	73.6	ug/L	07/24/2024	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	07/24/2024	SKJACOBS	EPA 6020B	
Calcium	190	mg/L	07/24/2024	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	07/24/2024	SKJACOBS	EPA 6020B	
Cobalt	<0.5	ug/L	07/24/2024	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B	
Antimony	<5.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	07/24/2024	SKJACOBS	EPA 6020B	
Boron	1290	ug/L	07/23/2024	SKJACOBS	EPA 6010D	
Lithium	13.3	ug/L	07/23/2024	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	07/23/2024	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	07/22/2024	EUROFINS SAV	EPA 7470	
Fluoride	<0.10	mg/L	07/22/2024	LCWILLIA	EPA 300.0	
Chloride	141	mg/L	07/22/2024	LCWILLIA	EPA 300.0	
Sulfate	140	mg/L	07/22/2024	LCWILLIA	EPA 300.0	
Total Dissolved Solids	830.0	mg/L	07/18/2024	KRMATHER	SM 2540C	
Radium 226	2.07	pCi/L	08/13/2024	GEL	EPA 903.1 Mod	
Radium 228	0.264	pCi/L	08/07/2024	GEL -	EPA 904.0	
Radium 226/228 Combined Calculation	2.334	pCi/L	08/19/2024	SJLEVY	EPA 903.1 Mod	
рН	6.83	SU	07/15/2024	ZM/BM		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG03756 Location: GW Well WAP-23 Date: 07/16/2024 Sample Collector: ZM/BM

Loc. Code WAP-23 Time: 13:15

Analysis	Result	Units	Test Date	Analyst	Method	
Arsenic	775	ug/L	08/20/2024	SKJACOBS	EPA 6020B	
Barium	190	ug/L	08/20/2024	SKJACOBS	EPA 6020B	
Beryllium	<0.5	ug/L	08/20/2024	SKJACOBS	EPA 6020B	
Calcium	402	mg/L	08/20/2024	SKJACOBS	EPA 6020B	
Cadmium	<0.5	ug/L	08/20/2024	SKJACOBS	EPA 6020B	
Cobalt	<0.5	ug/L	08/20/2024	SKJACOBS	EPA 6020B	
Chromium	<5.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B	
Lead	<1.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B	
Selenium	<10.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B	
Antimony	5.5	ug/L	08/20/2024	SKJACOBS	EPA 6020B	
Thallium	<1.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B	
Boron	5270	ug/L	07/25/2024	SKJACOBS	EPA 6010D	
Lithium	342	ug/L	07/25/2024	SKJACOBS	EPA 6010D	
Molybdenum	<5.0	ug/L	07/25/2024	SKJACOBS	EPA 6010D	
Mercury	<0.2	ug/L	07/22/2024	EUROFINS SAV	EPA 7470	
Fluoride	0.48	mg/L	08/07/2024	GEL	EPA 300.0	
Chloride	301	mg/L	07/21/2024	GEL	EPA 300.0	
Sulfate	513	mg/L	07/21/2024	GEL	EPA 300.0	
Total Dissolved Solids	1665	mg/L	07/18/2024	KRMATHER	SM 2540C	
Radium 226	2.12	pCi/L	08/13/2024	GEL	EPA 903.1 Mod	
Radium 228	3.43	pCi/L	08/07/2024	GEL	EPA 904.0	
Radium 226/228 Combined Calculation	5.55	pCi/L	08/19/2024	SJLEVY	EPA 903.1 Mod	
pH	6.52	SU	07/16/2024	ZM/BM		

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

Linda Williams - Manager Analytical Services

Ellida Williamo Managol Analytical Celvices

SANTEE COOPER ANALYTICAL SERVICES CERTIFICATE OF ANALYSIS LAB CERTIFICATION #08552

Sample # AG03757

Location: GW Well WAP-24

Date: 07/10/2024

Sample Collector: ZM/BM

Loc. Code WAP-24

Time: 14:13

Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Barium	<5.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Calcium	59.3	mg/L	07/23/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Cobalt	<0.5	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Antimony	<5.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B
Boron	107	ug/L	07/18/2024	SKJACOBS	EPA 6010D
Lithium	<5.0	ug/L	07/18/2024	SKJACOBS	EPA 6010D
Molybdenum	<5.0	ug/L	07/18/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	07/20/2024	EUROFINS SAV	EPA 7470
Radium 226	0.330	pCi/L	08/07/2024	GEL	EPA 903.1 Mod
Radium 228	1.01	pCi/L	08/02/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	1.34	pCi/L	08/14/2024	SJLEVY	EPA 903.1 Mod
Fluoride	<0.10	mg/L	07/19/2024	LCWILLIA	EPA 300.0
Chloride	59.7	mg/L	07/19/2024	LCWILLIA	EPA 300.0
Sulfate	5.97	mg/L	07/19/2024	LCWILLIA	EPA 300.0
Total Dissolved Solids	293.8	mg/L	07/17/2024	KRMATHER	SM 2540C
pН	7.53	SU	07/10/2024	ZM/BM	

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc. - Lab ID# 32010

Sample Validated:

Linda Williams - Manager, Analytical Services

Final Validation Date:

NALVEIGNI GERVIGES

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG03758 Location: GW Well WAP-25 Date: 07/11/2024 Sample Collector: ZM/BM

Loc. Code WAP-25 Time: 14:16

Loc. Joue 11711 20	Time. 14.10							
Analysis	Result	Units	Test Date	Analyst	Method			
Arsenic	<5.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B			
Barium	10.1	ug/L	07/23/2024	SKJACOBS	EPA 6020B			
Beryllium	<0.5	ug/L	07/23/2024	SKJACOBS	EPA 6020B			
Calcium	67.7	mg/L	07/23/2024	SKJACOBS	EPA 6020B			
Cadmium	<0.5	ug/L	07/23/2024	SKJACOBS	EPA 6020B			
Cobalt	<0.5	ug/L	07/23/2024	SKJACOBS	EPA 6020B			
Chromium	<5.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B			
Lead	<1.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B			
Selenium	<10.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B			
Antimony	<5.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B			
Thallium	<1.0	ug/L	07/23/2024	SKJACOBS	EPA 6020B			
Boron	23.8	ug/L	07/22/2024	SKJACOBS	EPA 6010D			
Lithium	5.39	ug/L	07/22/2024	SKJACOBS	EPA 6010D			
Molybdenum	<5.0	ug/L	07/22/2024	SKJACOBS	EPA 6010D			
Mercury	<0.2	ug/L	07/20/2024	EUROFINS SAV	EPA 7470			
Fluoride	<0.10	mg/L	07/19/2024	LCWILLIA	EPA 300.0			
Chloride	11.6	mg/L	07/19/2024	LCWILLIA	EPA 300.0			
Sulfate	<2.0	mg/L	07/19/2024	LCWILLIA	EPA 300.0			
Total Dissolved Solids	238.8	mg/L	07/17/2024	KRMATHER	SM 2540C			
Radium 226	0.474	pCi/L	08/13/2024	GEL	EPA 903.1 Mod			
Radium 228	1.34	pCi/L	08/07/2024	GEL	EPA 904.0			
Radium 226/228 Combined Calculation	1.814	pCi/L	08/19/2024	SJLEVY	EPA 903.1 Mod			
рН	7.03	SU	07/11/2024	ZM/BM				

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date: 9/30/24

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG03759 Location: GW Well WAP-26 Date: 07/23/2024

Sample Collector: ZM/BM

Loc. Code WAP-26

Time: 10:42

2001 0040 11111 20			1111C. 10.72				
Analysis	Result	Units	Test Date	Analyst	Method		
Arsenic	<5.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B		
Barium	32.1	ug/L	08/20/2024	SKJACOBS	EPA 6020B		
Beryllium	<0.5	ug/L	08/20/2024	SKJACOBS	EPA 6020B		
Calcium	13.9	mg/L	08/20/2024	SKJACOBS	EPA 6020B		
Cadmium	<0.5	ug/L	08/20/2024	SKJACOBS	EPA 6020B		
Cobalt	<0.5	ug/L	08/20/2024	SKJACOBS	EPA 6020B		
Chromium	<5.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B		
Lead	<1.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B		
Selenium	<10.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B		
Antimony	<5.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B		
Thallium	<1.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B		
Boron	20.1	ug/L	07/30/2024	SKJACOBS	EPA 6010D		
Lithium	<5.0	ug/L	07/30/2024	SKJACOBS	EPA 6010D		
Molybdenum	<5.0	ug/L	07/30/2024	SKJACOBS	EPA 6010D		
Mercury	<0.2	ug/L	08/01/2024	EUROFINS SAV	EPA 7470		
Fluoride	<0.1	mg/L	08/02/2024	GEL	EPA 300.0		
Chloride	9.60	mg/L	08/02/2024	GEL	EPA 300.0		
Sulfate	36.9	mg/L	08/02/2024	GEL	EPA 300.0		
Total Dissolved Solids	91.25	mg/L	07/26/2024	KRMATHER	SM 2540C		
Radium 226	0.683	pCi/L	08/23/2024	GEL	EPA 903.1 Mod		
Radium 228	0.326	pCi/L	08/13/2024	GEL	EPA 904.0		
Radium 226/228 Combined Calculation	1.01	pCi/L	08/29/2024	SJLEVY	EPA 903.1 Mod		
pH	4.83	SU	07/23/2024	ZM/BM			

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date: 9

Analysis Validated:

Linda Williams - Manager Analytical Services

Authorized Signature Only- Not Valid Unless Signed

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG03760 Location: GW Well WAP-26 Date: 07/23/2024 Sample Collector: ZM/BM

Loc. Code WAP-26 DUP Time: 10:47

Loc. Gode WAI -20	DOI		11me, 10.47	ile, 10.47				
Analysis	Result	Units	Test Date	Analyst	Method			
Arsenic	<5.0	ug/L	08/13/2024	SKJACOBS	EPA 6020B			
Barium	31.7	ug/L	08/13/2024	SKJACOBS	EPA 6020B			
Beryllium	<0.5	ug/L	08/13/2024	SKJACOBS	EPA 6020B			
Calcium	14.2	mg/L	08/13/2024	SKJACOBS	EPA 6020B			
Cadmium	<0.5	ug/L	08/13/2024	SKJACOBS	EPA 6020B			
Cobalt	<0.5	ug/L	08/13/2024	SKJACOBS	EPA 6020B			
Chromium	<5.0	ug/L	08/13/2024	SKJACOBS	EPA 6020B			
Lead	<1.0	ug/L	08/13/2024	SKJACOBS	EPA 6020B			
Selenium	<10.0	ug/L	08/13/2024	SKJACOBS	EPA 6020B			
Antimony	<5.0	ug/L	08/13/2024	SKJACOBS	EPA 6020B			
Thallium	<1.0	ug/L	08/13/2024	SKJACOBS	EPA 6020B			
Boron	20.6	ug/L	07/30/2024	SKJACOBS	EPA 6010D			
Lithium	<5.0	ug/L	07/30/2024	SKJACOBS	EPA 6010D			
Molybdenum	<5.0	ug/L	07/30/2024	SKJACOBS	EPA 6010D			
Mercury	<0.2	ug/L	08/01/2024	EUROFINS SAV	EPA 7470			
Fluoride	<0.1	mg/L	08/02/2024	GEL	EPA 300.0			
Chloride	10.0	mg/L	08/02/2024	GEL	EPA 300.0			
Sulfate	37.2	mg/L	08/02/2024	GEL	EPA 300.0			
Total Dissolved Solids	71.25	mg/L	07/26/2024	KRMATHER	SM 2540C			
Radium 226	1.27	pCi/L	08/23/2024	GEL	EPA 903.1 Mod			
Radium 228	1.20	pCi/L	08/13/2024	GEL	EPA 904.0			
Radium 226/228 Combined Calculation	2.47	pCi/L	08/29/2024	SJLEVY	EPA 903.1 Mod			

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

Linda Williams - Manager Analytical Services

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG03761 Location: GW Well WAP-27 Date: 07/16/2024 Sample Collector: ZM/BM

Loc. Code WAP-27 Time: 12:16

	Time, 12.10								
Analysis	Result	Units	Test Date	Analyst	Method				
Arsenic	122	ug/L	08/20/2024	SKJACOBS	EPA 6020B				
Barium	89.5	ug/L	08/20/2024	SKJACOBS	EPA 6020B				
Beryllium	<0.5	ug/L	08/20/2024	SKJACOBS	EPA 6020B				
Calcium	121	mg/L	08/20/2024	SKJACOBS	EPA 6020B				
Cadmium	<0.5	ug/L	08/20/2024	SKJACOBS	EPA 6020B				
Cobalt	<0.5	ug/L	08/20/2024	SKJACOBS	EPA 6020B				
Chromium	<5.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B				
Lead	<1.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B				
Antimony	5.7	ug/L	08/20/2024	SKJACOBS	EPA 6020B				
Selenium	<10.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B				
Thallium	<1.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B				
Boron	2240	ug/L	07/25/2024	SKJACOBS	EPA 6010D				
Lithium	16.3	ug/L	07/25/2024	SKJACOBS	EPA 6010D				
Molybdenum	<5.0	ug/L	07/25/2024	SKJACOBS	EPA 6010D				
Mercury	<0.2	ug/L	07/22/2024	EUROFINS SAV	EPA 7470				
Fluoride	0.35	mg/L	08/06/2024	GEL	EPA 300.0				
Chloride	134	mg/L	07/20/2024	GEL	EPA 300.0				
Sulfate	82.0	mg/L	07/20/2024	GEL	EPA 300.0				
Total Dissolved Solids	683.8	mg/L	07/18/2024	KRMATHER	SM 2540C				
Radium 226	1.19	pCi/L	08/14/2024	GEL	EPA 903.1 Mod				
Radium 228	1.53	pCi/L	08/07/2024	GEL	EPA 904.0				
Radium 226/228 Combined Calculation	2.72	pCi/L	08/19/2024	SJLEVY	EPA 903.1 Mod				
pH	6.13	SU	07/16/2024	ZM/BM					

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Validation date:

Analysis Validated:

Linda Williams - Manager Analytical Services

Authorized Signature Only- Not Valid Unless Signed

SANTEE COOPER ANALYTICAL SERVICES

CERTIFICATE OF ANALYSIS

LAB CERTIFICATION #08552

Sample # AG03765

Location: GW Well WAP-30

Date: 07/16/2024

Sample Collector: ZM/BM

Loc. Code WAP-30

Time: 14:16

Loc. Code WAF-30					
Analysis	Result	Units	Test Date	Analyst	Method
Arsenic	<5.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B
Barium	92.6	ug/L	08/20/2024	SKJACOBS	EPA 6020B
Beryllium	<0.5	ug/L	08/20/2024	SKJACOBS	EPA 6020B
Calcium	175	mg/L	08/20/2024	SKJACOBS	EPA 6020B
Cadmium	<0.5	ug/L	08/20/2024	SKJACOBS	EPA 6020B
Cobalt	<0.5	ug/L	08/20/2024	SKJACOBS	EPA 6020B
Chromium	<5.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B
Lead	<1.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B
Antimony	6.8	ug/L	08/20/2024	SKJACOBS	EPA 6020B
Selenium	<10.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B
Thallium	<1.0	ug/L	08/20/2024	SKJACOBS	EPA 6020B
Boron	669	ug/L	07/25/2024	SKJACOBS	EPA 6010D
Lithium	8.42	ug/L	07/25/2024	SKJACOBS	EPA 6010D
Molybdenum	20.1	ug/L	07/25/2024	SKJACOBS	EPA 6010D
Mercury	<0.2	ug/L	07/22/2024	EUROFINS SAV	EPA 7470
Fluoride	0.12	mg/L	08/07/2024	GEL	EPA 300.0
Chloride	180	mg/L	07/21/2024	GEL	EPA 300.0
Sulfate	108	mg/L	07/21/2024	GEL	EPA 300.0
Total Dissolved Solids	931.2	mg/L	07/18/2024	KRMATHER	SM 2540C
Radium 226	0.535	pCi/L	08/13/2024	GEL	EPA 903.1 Mod
Radium 228	-0.284	pCi/L	08/07/2024	GEL	EPA 904.0
Radium 226/228 Combined Calculation	0.535	pCi/L	08/19/2024	SJLEVY	EPA 903.1 Mod
pH	6.71	SU	07/16/2024	ZM/BM	

Comments:

Independent Laboratory Results: "GEL" - GEL Laboratories LLC - Lab ID # 10120; "Test America" - TestAmerica Laboratories, Inc. - Lab ID# 98001; "DavisBrown"- Davis & Brown Lab ID # 21117; "Shealy"- Shealy Environmental Services, Inc.- Lab ID# 32010 "ROGERSCALLCO"-Rogers & Callcot, Inc.- Lab ID # 23105001

Analysis Validated:

Linda Williams - Manager Analytical Services

Validation date: 9/30

a member of The GEL Group INC

gel.com

March 06, 2024

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 654972

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on February 09, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

20 colon

Jordan Melton for Julie Robinson

Project Manager

Purchase Order: 125915/JM02.08.G01.3/36500

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 654972 GEL Work Order: 654972

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

	Jordan	Melton
Reviewed by		

Page 2 of 18 SDG: 654972

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 6, 2024

SOOP00119

90.7

(15%-125%)

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90605 Sample ID: 654972001 Matrix: GW

Matrix: GW

Collect Date: 07-FEB-24 10:07
Receive Date: 09-FEB-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Propo	rtional Counting	,									
GFPC, Ra228, Liquid	d "As Received"										
Radium-228	U	0.936	+/-0.907	1.49	3.00	pCi/L		JE1	02/23/24	1110 2568526	1
Rad Radium-226											
Lucas Cell, Ra226, L	iquid "As Recei	ved"									
Radium-226		2.11	+/-0.917	0.840	1.00	pCi/L		LXP1	03/05/24	0913 2571356	2
The following Analy	tical Methods w	ere perfe	ormed:								
Method	Description	ō.					Analy	st Comment	S		
1	EPA 904.0/SW	7846 9320	Modified								

1	EPA 904.0/SW846 9320 Modified				
2	EPA 903.1 Modified				
Surrogate/Tracer	Recovery Test	Result	Nominal	Recovery%	Acceptable Limits

Notes:

Barium-133 Tracer

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

GFPC, Ra228, Liquid "As Received"

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 18 SDG: 654972

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 6, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90606 Sample ID: 654972002

Matrix: GW

Collect Date: 07-FEB-24 10:12 Receive Date: 09-FEB-24 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Pro	portional Counting	2									
GFPC, Ra228, Lic	quid "As Received"										
Radium-228	U	0.147	+/-0.989	1.81	3.00	pCi/L		JE1	02/23/24	1110 2568526	1
Rad Radium-226											
Lucas Cell, Ra226	5, Liquid "As Receiv	ved"									
Radium-226		1.69	+/-0.674	0.577	1.00	pCi/L		LXP1	03/05/24	0913 2571356	2
The following An	nalytical Methods w	ere perfe	ormed:								
Method	Description						Analy	st Comment	S		

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	*
2	EPA 903.1 Modified	

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 85.8 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 18 SDG: 654972

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 6, 2024

SOOP00119

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90604 Sample ID: 654972003

Matrix: GW

Collect Date: 07-FEB-24 11:12 Receive Date: 09-FEB-24 Client Collector:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Proport	ional Counting	5									
GFPC, Ra228, Liquid	"As Received"	•									
Radium-228		2.17	+/-0.887	1.13	3.00	pCi/L		JE1	02/23/24	1110 2568526	1
Rad Radium-226											
Lucas Cell, Ra226, Lio	quid "As Recei	ived"									
Radium-226		2.13	+/-0.867	0.754	1.00	pCi/L		LXP1	03/05/24	0913 2571356	2
The following Analyti	ical Methods v	vere perfo	rmed:								

Method Description

Analyst Comments EPA 904.0/SW846 9320 Modified

EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 92.8 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 18 SDG: 654972

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 6, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90596 Sample ID: 654972004

Matrix: GW

Collect Date: 06-FEB-24 10:25
Receive Date: 09-FEB-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Propo	ortional Counting										
GFPC, Ra228, Liqui	id "As Received"										
Radium-228		1.51	+/-0.814	1.16	3.00	pCi/L		JE1	02/23/24	1110 2568526	1
Rad Radium-226											
Lucas Cell, Ra226, I	Liquid "As Receiv	ved"									
Radium-226		4.23	+/-1.22	0.752	1.00	pCi/L		LXP1	03/05/24	0913 2571356	2
The following Anal	ytical Methods w	ere perfe	ormed:								
Method	Description						Analy	st Comment	S		
1	EDA 004 0/CW	046 0220	M. 4:6 . 4				- 2				

0	/T. D. T.	D L	NT . 1	D 0/	A 11 T
2	EPA 903.1 Modified				
1	EPA 904.0/SW846 9320 Modified		2		

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

92.2 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 18 SDG: 654972

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 6, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90597 Sample ID: 654972005

Matrix: GW

Collect Date: 06-FEB-24 11:19
Receive Date: 09-FEB-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Pro	portional Counting										
GFPC, Ra228, Liq	juid "As Received"										
Radium-228		3.16	+/-1.37	2.00	3.00	pCi/L		JE1	02/23/24	1111 2568526	1
Rad Radium-226											
Lucas Cell, Ra226	, Liquid "As Receiv	ved"									
Radium-226		4.72	+/-1.18	0.676	1.00	pCi/L		LXP1	03/05/24	0948 2571356	2
The following An	alytical Methods w	ere perfo	ormed:								
Method	Description					8	Analys	st Commen	ts		

 Method
 Description
 Analyst Comments

 1
 EPA 904.0/SW846 9320 Modified

 2
 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

90.6 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 18 SDG: 654972

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 6, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90599 Sample ID: 654972006

Matrix: GW

Collect Date: 06-FEB-24 12:45
Receive Date: 09-FEB-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Propor	rtional Counting	Ž.									
GFPC, Ra228, Liquid	d "As Received"										
Radium-228	U	0.0789	+/-1.34	2.47	3.00	pCi/L		JE1	02/23/24	1225 256852	5 1
Rad Radium-226											
Lucas Cell, Ra226, L	iquid "As Recei	ved"									
Radium-226	U	0.470	+/-0.485	0.761	1.00	pCi/L		LXP1	03/05/24	0948 257135	6 2
The following Analy	rtical Methods w	ere perfe	ormed:								
Method	Description	0					Analy	st Comment	S		
	EDA OOA O/CH	7046 0220	M 1'C 1				- 22				

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	<i>"</i>
2	EPA 903.1 Modified	

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

88.6 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 18 SDG: 654972

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 6, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90602 Sample ID: 654972007

Matrix: GW

Collect Date: 06-FEB-24 09:24
Receive Date: 09-FEB-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date		Time Batch	Method
Rad Gas Flow Propor	rtional Counting	Ž.									
GFPC, Ra228, Liquid	d "As Received"										
Radium-228	U	-0.0579	+/-0.881	1.66	3.00	pCi/L		JE1	02/23/24	1111 2568526	1
Rad Radium-226											
Lucas Cell, Ra226, L	iquid "As Recei	ved"									
Radium-226		1.30	+/-0.721	0.811	1.00	pCi/L		LXP1	03/05/24	0948 2571356	2
The following Analy	tical Methods w	ere perfe	ormed:								
Method	Description	0					Analy	st Comment	S		
1	FPA 904 0/SW	7846 9320	Modified								

I DIA	304.0/3 w 840 3320 Wodiffed				
2 EPA	903.1 Modified				
Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			92.1	(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 18 SDG: 654972

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 6, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90634 Sample ID: 654972008

Matrix: GW

Collect Date: 06-FEB-24 14:12
Receive Date: 09-FEB-24
Collector: Client

Qualifier Result Uncertainty **MDC** RL Units PF Parameter DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 2.16 +/-0.884 1.10 3.00 pCi/L JE1 02/23/24 1111 2568526 1 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" Radium-226 0.0320 +/-0.140 0.374 1.00 pCi/L LXP1 03/05/24 0948 2571356 The following Analytical Methods were performed: Method Description Analyst Comments

 Method
 Description
 Analyst Comments

 1
 EPA 904.0/SW846 9320 Modified

 2
 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

89.5 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 18 SDG: 654972

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 6, 2024

SOOP00119

90.3

(15%-125%)

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90595 Sample ID: 654972009

Matrix: GW

Collect Date: 05-FEB-24 14:35 09-FEB-24 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Propo	ortional Counting	2									
GFPC, Ra228, Liqui	id "As Received"										
Radium-228	U	0.185	+/-0.587	1.09	3.00	pCi/L		JE1	02/23/24	1111 256852	5 1
Rad Radium-226											
Lucas Cell, Ra226, I	Liquid "As Recei	ved"									
Radium-226		2.03	+/-0.764	0.653	1.00	pCi/L		LXP1	03/05/24	0948 257135	5 2
The following Anal	ytical Methods w	ere perfe	ormed:								
Method	Description						Analy	st Comment	S		
1	EDA 004 0/CH	1046 0220	Madie a				- 17				

Method	Description		Analyst Co	mments	
1	EPA 904.0/SW846 9320 Modified				
2	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma). Column headers are defined as follows:

Notes:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 18 SDG: 654972

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: March 6, 2024

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 654972

Parmname			NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Gas Flow												
Batch 256	58526	5-										
QC1205650263	654136001	DUP										
Radium-228			U	0.712		1.52	pCi/L	72.3		(0% - 100%)	JE1	02/23/24 11:11
			Uncertainty	+/-1.28		+/-0.944						
QC1205650264	LCS											
Radium-228			72.0			71.4	pCi/L		99.2	(75%-125%)		02/23/24 11:11
			Uncertainty			+/-3.83						
QC1205650262	MB											
Radium-228			22 1111 01210		U	0.536	pCi/L					02/23/24 11:11
			Uncertainty			+/-0.599						
Rad Ra-226												
Batch 257	71356	9-5										
QC1205655691	654972001	DUP				1.54	G: IT	10.0		(00/ 1000/)	T T/D1	02/05/24 10 05
Radium-226			I Itit	2.11 +/-0.917		1.74 +/-0.865	pCi/L	19.2		(0% - 100%)	LXPI	03/05/24 10:05
			Uncertainty	+/-0.91/		+/-0.803						
QC1205655693	LCS		13.7			2.77						
Radium-226			26.4			31.4	pCi/L		119	(75%-125%)		03/05/24 10:05
			Uncertainty			+/-3.08						
QC1205655690	MB											
Radium-226			TT		U	0.318	pCi/L					03/05/24 10:05
			Uncertainty			+/-0.318						
QC1205655692	654972001	MS					1000000					
Radium-226			137	2.11		130	pCi/L		93.5	(75%-125%)		03/05/24 10:05
			Uncertainty	+/-0.917		+/-13.6						

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

J Value is estimated

X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier

H Analytical holding time was exceeded

< Result is less than value reported

Page 12 of 18 SDG: 654972

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 2 of 2 NOM Sample Qual QC Units RPD% REC% Date Time **Parmname** Range Anlst

Result is greater than value reported

654972

- Gamma Spectroscopy--Uncertain identification UI
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Failed analysis. FA

Workorder:

- UJ Gamma Spectroscopy--Uncertain identification
- One or more quality control criteria have not been met. Refer to the applicable narrative or DER. Q
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- Analyte present. Reported value may be biased low. Actual value is expected to be higher. L
- N1See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- REMP Result > MDC/CL and < RDL M
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 13 of 18 SDG: 654972

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 654972

Product: GFPC, Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2568526

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
654972001	AF90605
654972002	AF90606
654972003	AF90604
654972004	AF90596
654972005	AF90597
654972006	AF90599
654972007	AF90602
654972008	AF90634
654972009	AF90595
1205650262	Method Blank (MB)
1205650263	654136001(AF87814) Sample Duplicate (DUP)
1205650264	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Preparation Information

Homogenous Matrix

Sample 654972003 (AF90604) was non-homogenous matrix. yellow liquid 654972003 (AF90604).

Technical Information

Recounts

Sample 654972006 (AF90599) was recounted due to a suspected false positive. The recount is reported.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2571356

Page 14 of 18 SDG: 654972

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
654972001	AF90605
654972002	AF90606
654972003	AF90604
654972004	AF90596
654972005	AF90597
654972006	AF90599
654972007	AF90602
654972008	AF90634
654972009	AF90595
1205655690	Method Blank (MB)
1205655691	654972001(AF90605) Sample Duplicate (DUP)
1205655692	654972001(AF90605) Matrix Spike (MS)
1205655693	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Preparation Information

Aliquot Reduced

1205655691 (AF90605DUP), 1205655692 (AF90605MS) and 654972001 (AF90605) Aliquots were reduced due to limited sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 15 of 18 SDG: 654972

Contract Lab Info:

Send report to lcwillia@santeecooper.com & sherri.levy@santeecooper.com

Chain of Custody

Custome	El Lillali,	/кер	ort Recipie	iii.	Date N	esults Ne	eueu b	у.		PI	ojecty	ask/	Jnit #:		Rerun reque	est for a	ny flag	ged QC
LINDA.	WILLIA	2M	@santeec	ooper.com					125	915	JML_	62.0	8.601.3	365	ico (Ye	. No		
																,	nalysis	Group
Labwork	re ID#	San	nple Locatio	n/		LO SOE NE	TON SECTION SE	EN Lyer	District of	En War		SVa(S)(S)		Com		-	1 1	<u> </u>
(Internal only)	Marie Control	142224	cription		Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Rep Mis	hod # orting limits. sample of other note	info	KAD 226	RAD 228	
AFGO	665	W.	AP-10		2/7/24	1067	WJK BM	2	P	G	GW	2				1	1	
1	90	W	4P-10 D	uP		1012	ŀ	1			1						1	
1	04	W	AP-9		1	1112	Ţ	1		1		Ī						
AF 909	546	WA	LP-2		2/6/24	1025	MJK	1	1	(1							
1	97	We	H-2R			1119	1											
1	99	Wo	AP-4			1245	1	Ī	1	1		1						
AF906	.02	W	A+-7			6924	1	1	1	1	1	1			H			
1	34	W	3W -1	,		1412	1	Ī								\top	Ш	
AF905	95	WA	HP-1		2/5/24	1435	WJK	1	L	1	1	1						
Relingu	ished by:		Employee#	Date	Time	Receiv	ed by:	E	mployee	#	Date		Time	Sample	Receiving (Intern	al Use O	nly)	
Sheo		=	35594	2/9/24		.1	1		GEL 2/9/21			1EMP (°C):			_ Initia	l:	_	
-	ished by:		Employee#	Date	Time	Receiv	ed by:		Employee # Date			095 Time	Correc	rrect pH: Yes No				
0	1	20000	GEI.	200	11/0	Mar	who	- 6	GEL 2/9/24		24	1550	Preser	vative Lot#:				
Relinqu	ished by:	10.5	Employee#	2-9, 24 Date	1550 C	Receiv	ed by:		mployee		Date		Time					
STATE STATE SHAPE		SEPTICE SE	na lecendaries		SCHOOL STATE		NESTALLS CON	PAS BERTAN	10000			Envering Up		Date/T	ime/Init for pres	ervative:		
		CTA	LS (all)	Nut	rients	BAI			G	, DCIII			Cool				011	
□ Ag	□ Ct	1	□ Sb	D TO	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUM	MIS □ BTEX	<u>sc.</u>	0	Wallbo	psur	"	D	Coal Ultimate		Flyash	T-	Oil	
	□ Fe	Castillia	□ Se	□ DO	C	□ Naphtha			Gyp	sum(a	II		☐ % Moist	ture	□ Ammonia □ LOI	D.	%Moist	
□ As	□ K	Carried St	□ Sn	□ TP/	TPO4	□ THM/H. □ VOC	AA		belo Al	CONTRACTOR OF THE PARTY OF			□ Ash		☐ % Carbon		Color	
□В	□Li	This in the	□ Sr	□ F	3-10	□ Oil & G	rease		DIC	C			□ Sulfur □ BTUs		☐ Mineral Analysis	O.D.	ielectric	Strength
□ Ba	Mg				tal meta			□ Volatile	Matter	□ Sieve		FT Dissolve	d Gases					
□ Be			□рН			□ Pu	rity (Ca	SO4)	0	CHN		☐ % Moisture		ed Oil				
□ Ca			d Fe			Moistur lfites	c	100000000000000000000000000000000000000	Other Tests: □ XRF Scan NPDES			O N	lashpoi detals i	n oil				
□ Cd	□ Na	ı	□ Zn	□ SO	1	☐ Rad 226 ☐ Rad 228		9	□pH				HGI Fineness		Oil & Grease		As,Cd,	Cr,Ni,Pb
□ Co			200		□ PCB			☐ Chlorides ☐ Particle Size				Particulate M	atter	□ As	As CTX			
□ Cr □ Pb □ CrVI		Man Political	ALLEGATION STOCKED CONTRACTOR STOCKED			□ Sulfur					HY0241	□ TSS □ GOFER						

Laboratories LLC	SAMPLE RECEIPT & REVIEW FORM
ent: SOOT	SDG/AR/COC/Work Order: (054977
alvad Ry. CLM	Despraced 2 9 34
	FedEx Express FedEx Ground UPS Field Services Courier Other
Carrier and Tracking Number	(coler 1- 19° (Rithern) cooter 3-4°
Carrier and Fracting Intracer	
	Coolers-3. Cooler4-00
pacted Hazard Information	"If Net Courts > 100cpm on samples not marked "radiognized, contact the Radiation Safety Group for farther investigation.
sipped as a DOT Hazzedous?	Hazard Class Shipped: LY UN2940, Is the Radiosctive Shipment Survey Compliant? YesNo
id the ollent designate the samples are to be	COC bout of contract the contract of the contr
id the RSO classify the samples as Currently Property of the samples as	Maximum Net Counts Observed* (Coserved Counts - Area Background Counts): Classified as: Rad 1 Rad 2 Rad 3
id the olient designate semples are hazardons?	
d the RSO identify possible bezards?	Af D or E is yes, select Hezerth below. PCB's Flaturable Foreign Soil RCRA Asbestos Beryllium Other.
Little Control of the	Comments/Qualifiers (Required for Non-Conforming Items)
Shipping consiners received intest and lealed?	Circle Applicable: Seals broken Damaged conniner Leaking container Other (describe)
Chain of custody decuments included with shipment?	Circle Applicable: Client contacted and provided COC COC created upon receipt
iamples requiring cold preservation	Freservation Method: (Wet Ice) Inc Packs Dry Ice (None) Other: *all temperature perior Sarial & 188-23 Temperature Device Sarial & 188-23
Daily obeck performed and passed on R manufacture gm?	Temperature Device Serial #: IR8-33 Secondary Temperature Device Serial # (If Applicable):
ample containers innet and seried?	Circle Applicables Seels broken Damaged combiner Leaking container Other (describe).
amples requiring chemical preservation proper pH?	Sample D's and Continent Affected: If Preservation Selekt, Look
	If Yes, are Eccores or Soil Kirs present for solids? Yes No NA Of was take in YOA Empared
Do any samples require Volatile Analysis?	Do liquid VOA visis contain and preservation? Yes II No NA (if unknown, select No) Are liquid VOA visis fine of headspace? Yes No NA
	Sample D's and occumbers affected:
	TD's radioses affected:
imples received within holding time?	
mple D's on COC match D's on rules?	ID's and containers effected:
ue & time on COC march date & time	Aircle Applicables No density of containers. No dimes on occitainers—COC missing into-Other (describe). Times are different on sample This AF9112U-
mber of costainers received march aber indicated on COC?	Circle Applicable: No consider count on CCC Other (describe)
e sample containers identifiable as L provided by use of GEL labels?	
C form is properly signed in acquished/received sections?	Climie Applicable: Not relinquished Cther (describe)
is (Use Continuation Form it seeded): also an Sample ID.	AF91632 compared to the CCC.
654978 + 651	
	1110
	I/W/-

GL-CHL-SR-CO1 Rev

List of current GEL Certifications as of 06 March 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122024-05
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-23-21
Utah NELAP	SC000122023-38
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
w ashington	C/60

a member of The GEL Group INC

gel.com

March 13, 2024

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 655802

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on February 16, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Max Gloth for Julie Robinson Project Manager

Purchase Order: 125915/JM02.08.G01.1/36500

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 655802 GEL Work Order: 655802

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Page 2 of 19 SDG: 655802

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 13, 2024

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90636 Sample ID: 655802001

Matrix: GW

Collect Date: 13-FEB-24 10:13
Receive Date: 16-FEB-24
Collector: Client

Client ID: SOOP001

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF D	F Anal	yst Date	Time Batch	Method
Rad Gas Flow Propor	tional Counting	5									
GFPC, Ra228, Liquid	"As Received"	•									
Radium-228		1.51	+/-0.822	1.16	3.00	pCi/L		JE1	03/08/24	0946 2572476	5 1
Rad Radium-226											
Lucas Cell, Ra226, Li	quid "As Recei	ived"									
Radium-226		1.47	+/-0.594	0.456	1.00	pCi/L		MJ2	03/13/24	0753 2571365	2
The following Analyt	tical Methods v	vere perfe	ormed:								
Method	Description	.0					Analyst Co	ommen	ts		
1	EPA 904.0/SV	V846 9320 I	Modified								
2	EPA 903.1 Mo	odified									
Surrogate/Tracer Reco	overy Test				R	esult	Nominal	Reco	overy%	Acceptable L	imits
Barium-133 Tracer	GFPC, I	Ra228, Liqu	iid "As Received"						91.5	(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 19 SDG: 655802

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 13, 2024

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90641 Sample ID: 655802002

Matrix: GW

Collect Date: 12-FEB-24 14:05
Receive Date: 16-FEB-24
Collector: Client

Project: SOOP00119
Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proport	ional Counting	1									
GFPC, Ra228, Liquid	"As Received"										
Radium-228	U	-0.125	+/-0.626	1.26	3.00	pCi/L		JE1	03/08/24	0946 2572476	1
Rad Radium-226											
Lucas Cell, Ra226, Lic	quid "As Recei	ved"									
Radium-226		0.548	+/-0.327	0.279	1.00	pCi/L		MJ2	03/13/24	0753 2571365	2
The following Analyt	ical Methods w	ere perfe	ormed:								
Method	Description	0				I	Analys	t Commen	ts		
1	EPA 904.0/SW	/846 9320	Modified								
2	EPA 903.1 Mo	dified									

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

85.7 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 19 SDG: 655802

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

93.1

(15%-125%)

Report Date: March 13, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90620 Sample ID: 655802003

Matrix: GW

Collect Date: 12-FEB-24 12:45
Receive Date: 16-FEB-24
Collector: Client

Qualifier Result Uncertainty **MDC** RL Units PF Parameter DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 0.211 +/-0.607 1.12 3.00 pCi/L JE1 03/08/24 0946 2572476 1 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received" Radium-226 +/-0.416 0.528 1.00 pCi/L MJ2 03/13/24 0753 2571365 The following Analytical Methods were performed:

Method Description

1 EPA 904.0/SW846 9320 Modified
2 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Notes:

Barium-133 Tracer

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

GFPC, Ra228, Liquid "As Received"

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 19 SDG: 655802

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 13, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address:

P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90644 Sample ID: 655802004

Matrix: GW

Collect Date: 08-FEB-24 09:48 16-FEB-24 Receive Date: Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propo	rtional Counting	,									
GFPC, Ra228, Liqui	d "As Received"										
Radium-228	U	0.781	+/-0.759	1.24	3.00	pCi/L		JE1	03/08/24	0946 2572476	1
Rad Radium-226											
Lucas Cell, Ra226, L	iquid "As Recei	ved"									
Radium-226	U	0.169	+/-0.241	0.421	1.00	pCi/L		MJ2	03/13/24	0753 2571365	2
The following Analy	tical Methods w	ere perfe	ormed:								
Method	Description	0					Analys	st Commen	ts		

Method	Description	Analyst Comm
1	EPA 904.0/SW846 9320 Modified	

2 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 84.9 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 19 SDG: 655802

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 13, 2024

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90645 Sample ID: 655802005

Matrix: GW

Collect Date: 08-FEB-24 09:53
Receive Date: 16-FEB-24
Collector: Client

D: AF90645 Project: SOOP00119 655802005 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propor	rtional Counting	Ž.									
GFPC, Ra228, Liquid	d "As Received"										
Radium-228	U	0.515	+/-0.562	0.927	3.00	pCi/L		JE1	03/08/24	0946 2572476	1
Rad Radium-226											
Lucas Cell, Ra226, L	iquid "As Recei	ved"									
Radium-226	ē.	0.503	+/-0.356	0.438	1.00	pCi/L		MJ2	03/13/24	0753 2571365	2
The following Analy	tical Methods w	ere perfo	rmed:								
Method	Description Analyst Comments										
1	EPA 904.0/SW846 9320 Modified										
2	EPA 903.1 Mo	dified									

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

91.8 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 19 SDG: 655802

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 13, 2024

SOOP00119

88.5

(15%-125%)

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90621 Sample ID: 655802006

Matrix: GW

Collect Date: 08-FEB-24 11:05 Receive Date: 16-FEB-24 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propo	ortional Counting										
GFPC, Ra228, Liqui	id "As Received"										
Radium-228		1.78	+/-0.945	1.35	3.00	pCi/L		JE1	03/08/24	0946 2572476	1
Rad Radium-226											
Lucas Cell, Ra226, 1	Liquid "As Recei	ved"									
Radium-226	4	0.922	+/-0.428	0.291	1.00	pCi/L		MJ2	03/13/24	0753 2571365	2
The following Anal	ytical Methods w	ere perfe	ormed:								
Method	Description			Analyst Comments							
1	EDA 004 0/CH	046 0220	M. A.C. A								

Method	Description	Alialyst Collinelits							
1	EPA 904.0/SW846 9320 Modified		2						
2	EPA 903.1 Modified								
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits				

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

Notes:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 19 SDG: 655802

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 13, 2024

SOOP00119

80.2

(15%-125%)

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90638 Sample ID: 655802007

Matrix: GW

Collect Date: 14-FEB-24 10:10
Receive Date: 16-FEB-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propo	ortional Counting										
GFPC, Ra228, Liqu	id "As Received"										
Radium-228	U	0.639	+/-1.00	1.73	3.00	pCi/L		JE1	03/08/24	0947 2572476	1
Rad Radium-226											
Lucas Cell, Ra226,	Liquid "As Recei	ved"									
Radium-226		1.33	+/-0.579	0.530	1.00	pCi/L		MJ2	03/13/24	0753 2571365	2

The following Analytical Methods were performed:

Method	Description		Analyst Co.	mments	
1	EPA 904.0/SW846 9320 Modified				
2	EPA 903.1 Modified				
Surrogate/Tracer Recove	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Notes:

Barium-133 Tracer

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

GFPC, Ra228, Liquid "As Received"

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 19 SDG: 655802

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 13, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90639 Sample ID: 655802008

Matrix: GW

Collect Date: 14-FEB-24 11:05
Receive Date: 16-FEB-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Prop	portional Counting	,									
GFPC, Ra228, Liq	uid "As Received"										
Radium-228	U	0.184	+/-0.870	1.60	3.00	pCi/L		JE1	03/08/24	0947 2572476	1
Rad Radium-226											
Lucas Cell, Ra226,	Liquid "As Recei	ved"									
Radium-226		0.491	+/-0.345	0.338	1.00	pCi/L		MJ2	03/13/24	0753 2571365	2
The following Ana	alytical Methods w	ere perfe	ormed:								
								_			

 Method
 Description
 Analyst Comments

 1
 EPA 904.0/SW846 9320 Modified

EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

88.1 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 19 SDG: 655802

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 13, 2024

SOOP00119

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO₃

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90640 Sample ID: 655802009

Matrix: GW

Collect Date: 14-FEB-24 11:10 Receive Date: 16-FEB-24 Client Collector:

Project:

Client ID:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Propo	rtional Counting	į.									
GFPC, Ra228, Liqui	d "As Received"										
Radium-228	U	1.24	+/-1.04	1.67	3.00	pCi/L		JE1	03/08/24	0947 2572476	1
Rad Radium-226											
Lucas Cell, Ra226, I	Liquid "As Recei	ved"									
Radium-226		0.528	+/-0.374	0.441	1.00	pCi/L		MJ2	03/13/24	0826 2571365	2
The following Analy	ytical Methods w	ere perfor	med:								

Method Analyst Comments Description EPA 904.0/SW846 9320 Modified EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 85.3 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 19 SDG: 655802

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 13, 2024

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90635 Sample ID: 655802010

Matrix: GW

Collect Date: 14-FEB-24 12:19 Receive Date: 16-FEB-24 Collector: Client

Project: Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF I	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propor	rtional Counting										
GFPC, Ra228, Liquid	d "As Received"										
Radium-228	U	0.394	+/-0.951	1.70	3.00	pCi/L		JE1	03/08/24	0947 2572476	1
Rad Radium-226											
Lucas Cell, Ra226, L	iquid "As Recei	ved"									
Radium-226	4	1.24	+/-0.502	0.386	1.00	pCi/L		MJ2	03/13/24	0826 2571365	2
The following Analy	tical Methods w	ere perfe	ormed:								
Method	Description						Analyst (Commen	ts		
1	EPA 904.0/SW	/846 9320]	Modified								
2	EPA 903.1 Mc	dified									
Surrogate/Tracer Rec	covery Test				R	esult	Nominal	Reco	very%	Acceptable L	imits
Barium-133 Tracer	GFPC, I	Ra228, Liqu	iid "As Received"						78.3	(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 19 SDG: 655802

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: March 13, 2024

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 655802

Parmname	<u> </u>		NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Ti	ne
Rad Gas Flow													
Batch 25	72476	-											—
QC1205657971 Radium-228	655802001	DUP	Uncertainty	1.51 +/-0.822		1.40 +/-0.907	pCi/L	7.46		(0% - 100%)	JE1	03/08/24 0	9:46
QC1205657972 Radium-228	LCS		73.2 Uncertainty			66.6 +/-4.09	pCi/L		91	(75%-125%)		03/08/24 0	9:46
QC1205657970 Radium-228	MB		Uncertainty		U	0.608 +/-0.873	pCi/L					03/08/24 0	9:46
Rad Ra-226 Batch 25	571365	.											
QC1205655728 Radium-226	655802001	DUP	Uncertainty	1.47 +/-0.594		1.29 +/-0.569	pCi/L	12.8		(0% - 100%)	MJ2	03/13/24 0	9:02
QC1205655730 Radium-226	LCS		26.9 Uncertainty			25.2 +/-2.32	pCi/L		93.7	(75%-125%)		03/13/24 0	9:02
QC1205655727 Radium-226	MB		Uncertainty		U	0.112 +/-0.191	pCi/L					03/13/24 0	9:02
QC1205655729 Radium-226	655802001	MS	135 Uncertainty	1.47 +/-0.594		110 +/-9.77	pCi/L		80.5	(75%-125%)		03/13/24 0	9:02

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported

Page 13 of 19 SDG: 655802

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 2 of 2 NOM Sample Qual QC Units RPD% REC% Date Time **Parmname** Range Anlst

-	D14	in amantam	there wells	ie reported
-	Resum	18 greater	than valu	ie reported

655802

- UI Gamma Spectroscopy--Uncertain identification
- Results are either below the MDC or tracer recovery is low BD
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Failed analysis. FA

Workorder:

- UJ Gamma Spectroscopy--Uncertain identification
- One or more quality control criteria have not been met. Refer to the applicable narrative or DER. Q
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- Analyte present. Reported value may be biased low. Actual value is expected to be higher. L
- See case narrative N1
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- REMP Result > MDC/CL and < RDL M
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 14 of 19 SDG: 655802

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 655802

Product: GFPC, Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2572476

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
655802001	AF90636
655802002	AF90641
655802003	AF90620
655802004	AF90644
655802005	AF90645
655802006	AF90621
655802007	AF90638
655802008	AF90639
655802009	AF90640
655802010	AF90635
1205657970	Method Blank (MB)
1205657971	655802001(AF90636) Sample Duplicate (DUP)
1205657972	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

There are no exceptions, anomalies or deviations from the specified methods. All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2571365

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
655802001	AF90636
655802002	AF90641
655802003	AF90620
655802004	AF90644
655802005	AF90645
655802006	AF90621
655802007	AF90638
655802008	AF90639

Page 15 of 19 SDG: 655802

655802009	AF90640
655802010	AF90635
1205655727	Method Blank (MB)
1205655728	655802001(AF90636) Sample Duplicate (DUP)
1205655729	655802001(AF90636) Matrix Spike (MS)
1205655730	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1205655729 (AF90636MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 16 of 19 SDG: 655802

Contract Lab Info: GEL Contract Lab Due Date (Lab Only): 3

USS 802

Send report to |cwillia@santeecooper.com & sherri.levy@santeecooper.com

Chain of Custody

,24

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LINDA . WILLIAMS @santeecooper.com 125915 / JM02.08. 601.1/ 36500 (Yes) No **Analysis Group** Labworks ID# Sample Location/ Comments Collection Time Collection Date Description Matrix(see below (Internal use Bottle type: (Glass G/Plastic-P) Collecto rotal # of contai only) 228 Grab (G) or Composite (C) Reporting limit Preservative 226 Misc. sample info below) Any other notes 松子 RAD WJK × P 2/13/24 2 2 1013 G GW AF90636 WLF-AI-1 WLF-A1-5 2/12/24 1405 AF 90641 20 WAP-18 1245 WLF-A2-6 2/8/24 0948 44 0953 WLF-A2-6 DUP 45 1105 21 WAP-19 AF 90638 2/14/24 WLF-A1-3 1010 39 WLF-AI-4 1105 40 WLF-AI-4 DUP 1110 35 WBW-AI-1 1219 Sample Receiving (Internal Use Only) Received by: Relinquished by: Employee# Date Time Employee # Date Time TEMP (°C):______ Initial: 0925 2/16/24 0925 36851 2/16/24 CIL Correct pH: Yes Relinquished by: Employee# Date Time Received by: Employee # Date Time Preservative Lot#: Employee# 6+L (4/24 1250 Relinquished by: Received by: Employee # Date Time Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. Gypsum Coal Oil Flyash □ Sb □ Ag □ Cu TOC BTEX ☐ Wallboard □ Ultimate Trans. Oil Qual. ☐ Ammonia □ A1 □ Fe □ Se □ Naphthalene Gypsum(all DOC %Moisture ☐ % Moisture □ LOI □ THM/HAA □ As □ K □ Sn Color below) TP/TPO4 □ Ash □ % Carbon □ VOC □ AIM Acidity NH3-N □ Sulfur \Box B □ Li □ Sr ☐ Mineral □ Oil & Grease Dielectric Strength TOC BTUs Analysis IFT □ E. Coli □ Mg □ Ba □ Ti ☐ Total metals Cl □ Volatile Matter □ Sieve Dissolved Gases ☐ Total Coliform ☐ Soluble Metals □ Be □ Mn NO₂ CHN □pH □ Purity (CaSO4) ☐ % Moisture Used Oil Br ☐ Dissolved As Other Tests: Flashpoint □ % Moisture □ Ca □ Mo DV NO₃ □ Dissolved Fe ☐ XRF Scan Metals in oil □ Sulfites **NPDES** □ Cd □ Na □ Zn ☐ Rad 226 (As,Cd,Cr,Ni,Pb **SO4** □pH □ HGI □ Oil & Grease Hg) □ Rad 228 □ Chlorides ☐ Fineness □ Ni □Hg □ Co □ PCB TX ☐ Particle Size ☐ Particulate Matter □ TSS □РЬ □ CrVI GOFER □ Cr

	No. 100
GEL	Laboratories LLC

SAMPLE RECEIPT & REVIEW FORM

Received By: QG Date Received: 2 110 2 4 FedEx Express FedEx Ground UPS Field Services Courier other Carrier and Tracking Number	
Circle Applicable: FedEx Express FedEx Ground UPS Field Services Courier Other Carrier and Tracking Number	
1/16	
Suspected Hazard Information *If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further invest	gation.
A)Shipped as a DOT Hazardous? #lazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes No	
B) Did the client designate the samples are to be received as radioactive? COC notation or radioactive stickers on containers equal client designation.	
C) Did the RSO classify the samples as radioactive? (Observed Counts - Area Background Counts):	
D) Did the client designate samples are hazardous? COC position of hazard labels on containers equal client designation. If D or E is yes, select Hazards below.	
E) Did the RSO identify possible hazards? PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:	
Sample Receipt Criteria 💆 💆 Comments/Qualifiers (Required for Non-Conforming Items)	
Shipping containers received intact and sealed? Circle Applicable: Seals broken Damaged container Leaking container Other (describe)	
2 Chain of custody documents included with shipment? Circle Applicable: Client connacted and provided COC COC created upon receipt	
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?* Preservation Method: Wet lee Lee Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP: 12	20
4 Daily check performed and passed on IR temperature gun? Temperature Device Serial #: IR1-23 Secondary Temperature Device Serial # (If Applicable):	
5 Sample containers intact and sealed? Circle Applicable: Seals broken Damaged container Leaking container Other (describe)	
Samples requiring chemical preservation at proper pH? Sample ID's and Containers Affected: If Preservation added, Lot#:	
Do any samples require Volatile Analysis? Do any samples require Volatile Analysis? Do liquid VOA vials contain acid preservation? YesNoNA(If yes, take to VOA Freezer) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affocted:	
8 Samples received within holding time? (D's and tests affected:	
9 Sample ID's on COC match ID's on bottles? ID's and containers affected:	
Date & time on COC match date & time on bottles? Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)	
Number of containers received match number indicated on COC? Are sample containers identifiable as	
CEL provided by use of GEL labels? Circle Applicable: Not relinquished Other (describe)	
Comments (Use Continuation Form if needed):	
PM for PMA) review Initials MAD 2114174	

List of current GEL Certifications as of 13 March 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122024-05
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-23-21
Utah NELAP	SC000122023-38
Vermont	VT87156
Virginia NELAP	460202
Washington	C780
w ashington	C/60

gel.com

a member of The GEL Group INC

March 13, 2024

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 655804

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on February 16, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. There are no additional comments concerning sample receipt.

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

Max Gloth for Julie Robinson Project Manager

Purchase Order: 125915/JM02.09.G01.1/36500

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 655804 GEL Work Order: 655804

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

Reviewed by	MAA Doth	
_		

Page 2 of 18 SDG: 655804

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Analyst Comments

82.3

(15%-125%)

Report Date: March 13, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90624 Sample ID: 655804001

Matrix: GW

Collect Date: 12-FEB-24 11:47
Receive Date: 16-FEB-24
Collector: Client

Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
onal Counting	,									
'As Received'	ř.									
U	-0.535	+/-0.788	1.64	3.00	pCi/L		JE1	03/08/24	1059 2572465	1
uid "As Recei	ved"									
	1.35	+/-0.542	0.322	1.00	pCi/L		MJ2	03/13/24	0826 2571365	2
	onal Counting "As Received"	onal Counting "As Received" U -0.535	onal Counting "As Received" U -0.535 +/-0.788 quid "As Received"	onal Counting "As Received" U -0.535 +/-0.788 1.64 quid "As Received"	onal Counting "As Received" U -0.535 +/-0.788 1.64 3.00 quid "As Received"	onal Counting "As Received" U -0.535 +/-0.788 1.64 3.00 pCi/L quid "As Received"	onal Counting "As Received" U -0.535 +/-0.788 1.64 3.00 pCi/L quid "As Received"	onal Counting "As Received" U -0.535 +/-0.788 1.64 3.00 pCi/L JE1 quid "As Received"	onal Counting "As Received" U -0.535 +/-0.788 1.64 3.00 pCi/L JE1 03/08/24 quid "As Received"	onal Counting "As Received" U -0.535 +/-0.788 1.64 3.00 pCi/L JE1 03/08/24 1059 2572465 quid "As Received"

The following Analytical Methods were performed:

Description

1	EPA 904.0/SW 846 9320 Modified				
2	EPA 903.1 Modified				
Surrogate/Tracer Recov	ery Test	Result	Nominal	Recovery%	Acceptable Limits

Notes:

Barium-133 Tracer

Method

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

GFPC, Ra228, Liquid "As Received"

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 18 SDG: 655804

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 13, 2024

SOOP00119

81.9

(15%-125%)

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90608 Sample ID: 655804002

Matrix: GW

Collect Date: 14-FEB-24 14:04
Receive Date: 16-FEB-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propor	rtional Counting	Ž.									
GFPC, Ra228, Liquid	d "As Received"										
Radium-228	U	1.32	+/-0.890	1.35	3.00	pCi/L		JE1	03/08/24	1100 2572465	1
Rad Radium-226											
Lucas Cell, Ra226, L	iquid "As Recei	ved"									
Radium-226	40	0.578	+/-0.333	0.340	1.00	pCi/L		MJ2	03/13/24	0826 2571365	2
The following Analy	rtical Methods w	ere perfe	ormed:								
Method	Description	0					Analy	st Commen	ts		
1	EDA 004 0/SU	7946 0220	Modified								

1	EPA 904.0/SW846 9320 Modified				
2	EPA 903.1 Modified				
Surrogate/Tracer	Recovery Test	Result	Nominal	Recovery%	Acceptable Limits

Notes:

Barium-133 Tracer

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

GFPC, Ra228, Liquid "As Received"

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 4 of 18 SDG: 655804

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 13, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90609 Sample ID: 655804003

Matrix: GW

Collect Date: 14-FEB-24 14:09
Receive Date: 16-FEB-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proj	portional Counting	Ž.									
GFPC, Ra228, Liq	uid "As Received"										
Radium-228	U	1.10	+/-1.01	1.63	3.00	pCi/L		JE1	03/08/24	1100 2572465	1
Rad Radium-226											
Lucas Cell, Ra226,	, Liquid "As Recei	ved"									
Radium-226	U	0.320	+/-0.323	0.506	1.00	pCi/L		MJ2	03/13/24	0826 2571365	2
The following Ana	alytical Methods w	ere perfe	ormed:								
Method	Description					3	Analy	st Commen	ts		
							100				

Michiga	Description	Anaryst Comments
1	EPA 904.0/SW846 9320 Modified	*
2	EPA 903.1 Modified	

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

64.3 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 18 SDG: 655804

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 13, 2024

SOOP00119

71.8

(15%-125%)

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90642 Sample ID: 655804004

Matrix:

Collect Date: 13-FEB-24 11:35 Receive Date: 16-FEB-24 Collector: Client

Client ID: SOOP001 GW

Project:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF I	OF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proport	tional Counting	,									
GFPC, Ra228, Liquid	"As Received"	r.									
Radium-228	U	1.83	+/-1.29	2.03	3.00	pCi/L		JE1	03/12/24	1000 2572465	1
Rad Radium-226											
Lucas Cell, Ra226, Li	quid "As Recei	ved"									
Radium-226		1.03	+/-0.460	0.429	1.00	pCi/L		MJ2	03/13/24	0826 2571365	2
The following Analyt	ical Methods w	ere perfe	ormed:								
Method	Description	o.				1	Analyst (Comment	S		
1	EPA 904.0/SW	7846 9320 1	Modified								
2	EPA 903.1 Mc	odified									
Surrogate/Tracer Reco	overy Test				R	esult	Nominal	Reco	very%	Acceptable L	imits

Notes:

Barium-133 Tracer

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

GFPC, Ra228, Liquid "As Received"

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 18 SDG: 655804

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Report Date: March 13, 2024

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90643 Sample ID: 655804005

Matrix:

Collect Date: 13-FEB-24 12:41 16-FEB-24 Receive Date: Collector: Client

Client ID: SOOP001 GW

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF I	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propor	tional Counting	2									
GFPC, Ra228, Liquid	d "As Received"										
Radium-228		4.91	+/-1.51	1.89	3.00	pCi/L		JE1	03/12/24	1000 2572465	1
Rad Radium-226											
Lucas Cell, Ra226, Li	iquid "As Recei	ved"									
Radium-226	U	0.0278	+/-0.261	0.585	1.00	pCi/L		MJ2	03/13/24	0826 2571365	2
The following Analy	tical Methods w	ere perfe	ormed:								
Method	Description						Analyst (Commen	ts		
1	EPA 904.0/SW	846 9320	Modified								
2	EPA 903.1 Mo	dified									
Surrogate/Tracer Rec	overy Test				R	esult	Nominal	Reco	very%	Acceptable L	imits
Barium-133 Tracer	GFPC, F	Ra228, Liqu	iid "As Received"						72.6	(15%-125%)	ř.

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 18 SDG: 655804

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 13, 2024

(15%-125%)

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90618 Sample ID: 655804006

GW Matrix:

Collect Date: 13-FEB-24 13:48 16-FEB-24 Receive Date: Collector: Client

Project: Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF D	F Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid ".	As Received"										
Radium-228	U	1.29	+/-1.11	1.79	3.00	pCi/L		JE1	03/08/24	1100 2572465	1
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		0.899	+/-0.461	0.395	1.00	pCi/L		MJ2	03/13/24	0826 2571365	2
The following Analytic	al Methods w	ere perfo	ormed:								
Method	Description						Analyst C	omment	S		
1	EPA 904.0/SW	846 9320 1	Modified				**				
2	EPA 903.1 Mo	dified									
Surrogate/Tracer Recov	very Test				R	esult	Nominal	Reco	very%	Acceptable L	imits

Notes:

Barium-133 Tracer

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

GFPC, Ra228, Liquid "As Received"

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 18 SDG: 655804

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 13, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90619 Sample ID: 655804007

Matrix: GW

Collect Date: 13-FEB-24 13:53
Receive Date: 16-FEB-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propo	rtional Counting										
GFPC, Ra228, Liqui	d "As Received"										
Radium-228	U	0.681	+/-0.716	1.18	3.00	pCi/L		JE1	03/08/24	1100 2572465	1
Rad Radium-226											
Lucas Cell, Ra226, L	iquid "As Recei	ved"									
Radium-226		0.878	+/-0.468	0.450	1.00	pCi/L		MJ2	03/13/24	0902 2571365	2
The following Analy	tical Methods w	ere perfe	ormed:								
Method	Description						Analy	st Commen	ts		
1	EPA 904 0/SW	846 9320	Modified				- 2				

1 EPA	A 904.0/SW846 9320 Modified								
EPA 903.1 Modified									
Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits				
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			85.8	(15%-125%)				

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 18 SDG: 655804

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 13, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90598 Sample ID: 655804008

Matrix: GW

Collect Date: 08-FEB-24 14:39
Receive Date: 16-FEB-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propo	ortional Counting	Ž.									
GFPC, Ra228, Liqui	id "As Received"										
Radium-228		1.44	+/-0.813	1.17	3.00	pCi/L		JE1	03/08/24	1100 2572465	1
Rad Radium-226											
Lucas Cell, Ra226, I	Liquid "As Recei	ved"									
Radium-226		0.879	+/-0.454	0.471	1.00	pCi/L		MJ2	03/13/24	0902 2571365	2
The following Anal	ytical Methods w	ere perfe	ormed:								
Method	Description	0					Analy	st Commen	ts		
1	EPA 904.0/SW	7846 9320	Modified				- 2				

I DI	1 704.0/5 W 040 7520 Wodilled				
2 EPA					
Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			90.8	(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 18 SDG: 655804

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 13, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90637 Sample ID: 655804009

Matrix: GW

Collect Date: 08-FEB-24 13:20
Receive Date: 16-FEB-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Propo	ortional Counting										
GFPC, Ra228, Liqui	id "As Received"										
Radium-228		1.26	+/-0.783	1.14	3.00	pCi/L		JE1	03/08/24	1100 2572465	1
Rad Radium-226											
Lucas Cell, Ra226, 1	Liquid "As Recei	ved"									
Radium-226		2.02	+/-0.672	0.333	1.00	pCi/L		MJ2	03/13/24	0902 2571365	2
The following Anal	ytical Methods w	ere perfe	ormed:								
Method	Description						Analys	st Comment	S		

Memou	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	· ·
2	EPA 903.1 Modified	

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

86.9 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 18 SDG: 655804

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: March 13, 2024

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 655804

Parmname			NOM	Sample	Qual	QC	Units	RPD%	REC%	Range A	nlst	Date Time
Rad Gas Flow Batch 257	2465	-										
QC1205657933 Radium-228	655804001	DUP	U Uncertainty	-0.535 +/-0.788	U	0.00679 +/-0.454	pCi/L	N/A		N/A	JE1	03/08/24 11:00
QC1205657934 Radium-228	LCS		73.0 Uncertainty			63.6 +/-3.85	pCi/L		87.1	(75%-125%)		03/08/24 11:00
QC1205657932 Radium-228	MB		Uncertainty		U	1.35 +/-1.28	pCi/L					03/08/24 12:18
Rad Ra-226 Batch 257	1365	:										
QC1205655728 Radium-226	655802001	DUP	Uncertainty	1.47 +/-0.594		1.29 +/-0.569	pCi/L	12.8		(0% - 100%)	MJ2	03/13/24 09:02
QC1205655730 Radium-226	LCS		26.9 Uncertainty			25.2 +/-2.32	pCi/L		93.7	(75%-125%)		03/13/24 09:02
QC1205655727 Radium-226	MB		Uncertainty		U	0.112 +/-0.191	pCi/L					03/13/24 09:02
QC1205655729 Radium-226	655802001	MS	135 Uncertainty	1.47 +/-0.594		110 +/-9.77	pCi/L		80.5	(75%-125%)		03/13/24 09:02

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported

Page 12 of 18 SDG: 655804

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

655804 Page 2 of 2 NOM Sample Qual QC Units RPD% REC% Date Time **Parmname** Range Anlst

- Result is greater than value reported
- Gamma Spectroscopy--Uncertain identification UI
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Failed analysis. FA

Workorder:

- UJ Gamma Spectroscopy--Uncertain identification
- One or more quality control criteria have not been met. Refer to the applicable narrative or DER. Q
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- Analyte present. Reported value may be biased low. Actual value is expected to be higher. L
- See case narrative N1
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- REMP Result > MDC/CL and < RDL M
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 13 of 18 SDG: 655804

Radiochemistry Technical Case Narrative Santee Cooper SDG #: 655804

Product: GFPC, Ra228, Liquid

Analytical Method: EPA 904.0/SW846 9320 Modified Analytical Procedure: GL-RAD-A-063 REV# 5

Analytical Batch: 2572465

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
655804001	AF90624
655804002	AF90608
655804003	AF90609
655804004	AF90642
655804005	AF90643
655804006	AF90618
655804007	AF90619
655804008	AF90598
655804009	AF90637
1205657932	Method Blank (MB)
1205657933	655804001(AF90624) Sample Duplicate (DUP)
1205657934	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Technical Information

Recounts

Sample 1205657932 (MB) was recounted due to a suspected blank false positive. The recount is reported. Samples 655804004 (AF90642) and 655804005 (AF90643) were re-eluted and recounted to verify sample results. The recounts are reported.

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2571365

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
655804001	AF90624
655804002	AF90608

Page 14 of 18 SDG: 655804

655804003	AF90609
655804004	AF90642
655804005	AF90643
655804006	AF90618
655804007	AF90619
655804008	AF90598
655804009	AF90637
1205655727	Method Blank (MB)
1205655728	655802001(AF90636) Sample Duplicate (DUP)
1205655729	655802001(AF90636) Matrix Spike (MS)
1205655730	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Additional Comments

The matrix spike, 1205655729 (AF90636MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 15 of 18 SDG: 655804

Contract Lab Due Date (Lab Only):

3 / 15 / 24 Send report to lcwillio@santeecooper.com & sherri.levy@santeecooper.com

Chain of Custody

Santee Cooper One Riverwood Drive Moncks Comer, SC 29461 (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LINDA. WILLIAMS @santeecooper.com 125915 / JM02.09.601.1/ 36500 (Yes) No **Analysis Group** Labworks ID# Sample Location/ Comments Collection Time Description Matrix(see below (Internal use Method # Collecto Collection Da (Gla only) Reporting limit U 220 Bottle type: (G/Plastic-P) 22 Grab (G) or Composite (Misc. sample info RAD BAD Any other notes WJK X. 2 X AF 90624 WAP-22 2/12/24 1147 G GW 2/14/24 WAP-12 1404 AF90608 AF90609 WAP-12 DUP 1409 AF90642 WLF-A2-1 2/13/24 1135 WLF-A2-2 43 1241 18 WAP-17 1348 19 WAP-17 DUP 1353 AF90598 WAP-3 2/8/24 1439 AF90637 WLF-A1-2 2/8/24 1320 Sample Receiving (Internal Use Only) Time Received by: Relinquished by: Employee# Date Employee # Date Time TEMP (°C): Initial: 2/16/24 0925 GEL 0925 36851 2/16/24 Correct pH: Yes Relinquished by: Employee# Date Time Received by: Employee # Date Time Preservative Lot#: 1550 GEL Employee# Relinquished by: Received by: Employee # Time Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. Gypsum Coal Oil Flyash □ Cu □ Sb □ Ag TOC BTEX □ Wallboard Trans. Oil Qual. □ Ultimate □ Ammonia □ Al □ Fe □ Se DOC □ Naphthalene Gypsum(all %Moisture ☐ % Moisture LOI ☐ THM/HAA □ As □K □ Sn TP/TPO4 Color below) ☐ Ash 7 % Carbon □ VOC □ AIM Acidity NH3-N □ Sulfur $\Box B$ □ Li □ Sr ☐ Mineral □ Oil & Grease Dielectric Strength DTOC F □ BTUs Analysis IFT □ E. Coli □ Ti ☐ Total metals □ Ba □Mg CI ☐ Volatile Matter ☐ Sieve Dissolved Gases ☐ Total Coliform ☐ Soluble Metals □ Be □ Mn □ T1 NO₂ □ CHN □pH ☐ Purity (CaSO4) ☐ % Moisture Used Oil Br ☐ Dissolved As Other Tests: Flashpoint □ % Moisture □ Ca □ Mo $\Box V$ D NO3 ☐ Dissolved Fe ☐ XRF Scan Metals in oil □ Sulfites **NPDES** ☐ Rad 226 (As,Cd,Cr,Ni,Pb □ Cd □ Na □ Zn HGI □ SO4 □pH □ Oil & Grease Hg) ☐ Rad 228 □ Chlorides ☐ Fineness □ Co □ Ni □Hg □ PCB TX ☐ Particle Size ☐ Particulate Matter □ TSS □РЬ □ CrVI GOFER □ Cr

GEL Laboratories LLC

SAMPLE RECEIPT & REVIEW FORM Client: SOOP SDG/AR/COC/Work Order: Received By: QG Date Received: 2 Circle Applicable: FedEx Express FedEx Ground UPS Field Services Carrier and Tracking Number Yes Suspected Hazard Information No *If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation. nzard Class Shipped: If UN2910, Is the Radioactive Shipment Survey Compliant? Yes_ A)Shipped as a DOT Hazardous? B) Did the client designate the samples are to be received as radioactive? Maximum Net Counts Observed* (Observed Counts - Area Background Counts): _ C) Did the RSO classify the samples as Classified as: Rad I Rad 2 Rad 3 radioactive? position or hazard labels on confusions equal client designation. D) Did the client designate samples are hazardous? f D or E is yes, select Hazards below. PCB's Flammable Foreign Soil RCRA Asbestos Beryllium E) Did the RSO identify possible hazards? Sample Receipt Criteria No Nes Comments/Qualifiers (Required for Non-Conforming Items) Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Shipping containers received intact and scaled? Chain of custody documents included Circle Applicable: Client contacted and provided COC COC created upon receipt with shipment? Preservation Method: Wet Ice Ice Packs Dry ice Other: Samples requiring cold preservation TEMP: 122 *all temperatures are recorded in Celsius within $(0 \le 6 \text{ deg. C})$?* Temperature Device Serial #: IR1-23 Daily check performed and passed on IR Secondary Temperature Device Serial # (If Applicable): temperature gun? Circle Applicable: Seals broken Damaged container Leaking container Other (describe) Sample containers intact and sealed? Sample ID's and Containers Affected: Samples requiring chemical preservation 6 at proper pH? If Preservation added, Lotti: Wes, are Bacores or Soil Kits present for solids? Yes__No__NA__(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? Yes.___ No__ NA__(If unknown, select No) Do any samples require Volatile 7 Are liquid VOA vials free of headspace? Yes___ No__ NA_ Analysis? Sample ID's and containers affected: ID's and tests affected: Samples received within holding time? ID's and containers affected: Sample ID's on COC match ID's on bottles? Circle Applicable: No dates on containers No times on containers COC missing info Other (describe) Date & time on COC match date & time 10 on bottles? Circle Applicable: No container count on COC Other (describe) Number of containers received match number indicated on COC? Are sample containers identifiable as client and GEL GEL provided by use of GEL labels? COC form is properly signed in Circle Applicable: Not relinquished Other (describe) relinquished/received sections? Comments (Use Continuation Form if needed):

PM (or PMA) review: Initials __

List of current GEL Certifications as of 13 March 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122024-05
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC002
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-23-21
Utah NELAP	SC000122023-38
Vermont	VT87156
Vermont Virginia NELAP	460202
Washington	C780
w asnington	C/80

a member of The GEL Group INC

gel.com

March 19, 2024

Ms. Jeanette Gilmetti Santee Cooper P.O. Box 2946101 OCO3 Moncks Corner, South Carolina 29461

Re: ABS Lab Analytical Work Order: 656481

Dear Ms. Gilmetti:

GEL Laboratories, LLC (GEL) appreciates the opportunity to provide the enclosed analytical results for the sample(s) we received on February 23, 2024. This original data report has been prepared and reviewed in accordance with GEL's standard operating procedures.

The samples were delivered with proper chain of custody documentation and signatures. All sample containers arrived without any visible signs of tampering or breakage. The client labels were swapped on the containers. The client was notified and confirmed that the GEL labels were correct656481011(AF90628), 656481012(AF90629).

Test results for NELAP or ISO 17025 accredited tests are verified to meet the requirements of those standards, with any exceptions noted. The results reported relate only to the items tested and to the sample as received by the laboratory. These results may not be reproduced except as full reports without approval by the laboratory. Copies of GEL's accreditations and certifications can be found on our website at www.gel.com.

Our policy is to provide high quality, personalized analytical services to enable you to meet your analytical needs on time every time. We trust that you will find everything in order and to your satisfaction. If you have any questions, please do not hesitate to call me at (843) 556-8171, ext. 4289.

Sincerely,

20 colon

Jordan Melton for Julie Robinson Project Manager

Purchase Order: 398684

Enclosures

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis Report for

SOOP001 Santee Cooper

Client SDG: 656481 GEL Work Order: 656481

The Qualifiers in this report are defined as follows:

- * A quality control analyte recovery is outside of specified acceptance criteria
- ** Analyte is a Tracer compound
- ** Analyte is a surrogate compound
- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the Certificate of Analysis.

The designation ND, if present, appears in the result column when the analyte concentration is not detected above the limit as defined in the 'U' qualifier above.

This data report has been prepared and reviewed in accordance with GEL Laboratories LLC standard operating procedures. Please direct any questions to your Project Manager, Julie Robinson.

	Jordan	Melton
Reviewed by		

Page 2 of 36 SDG: 656481

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 19, 2024

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90610 Sample ID: 656481001

Matrix: GW

Collect Date: 21-FEB-24 10:15
Receive Date: 23-FEB-24
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter Qualifier Result DL RL Units PF DF Analyst Date Time Batch Method

Notes:

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 3 of 36 SDG: 656481

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: March 19, 2024

Page 1 of 1

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 656481

Parmname NOM Sample Qual QC Units RPD% REC% Range Anlst Date Time

Notes:

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported
- > Result is greater than value reported
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- ^ RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Q One or more quality control criteria have not been met. Refer to the applicable narrative or DER.
- N1 See case narrative
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 4 of 36 SDG: 656481

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 19, 2024

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90610 Sample ID: 656481001

Matrix: GW

Collect Date: 21-FEB-24 10:15
Receive Date: 23-FEB-24
Collector: Client

Project: SOOP00119 Client ID: SOOP001

85.6

(15%-125%)

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analyst Date		Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "	As Received"										
Radium-228		2.17	+/-1.36	2.10	3.00	pCi/L		JE1	03/13/24	1045 2575958	1
Rad Radium-226											
Lucas Cell, Ra226, Liq	uid "As Recei	ved"									
Radium-226		0.987	+/-0.402	0.302	1.00	pCi/L		MJ2	03/17/24	0838 2574135	2
The following Analytic	cal Methods w	ere perfe	ormed:								
Method	Description						Analyst	Comment	S		
1	EPA 904.0/SW	846 9320 1	Modified								
2	EPA 903.1 Mo	dified									
Surrogate/Tracer Recov	very Test				R	esult	Nomina	al Reco	very%	Acceptable L	imits

Notes:

Barium-133 Tracer

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

GFPC, Ra228, Liquid "As Received"

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 5 of 36 SDG: 656481

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 19, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90631 Sample ID: 656481002

Matrix: GW

Collect Date: 21-FEB-24 11:03 Receive Date: 23-FEB-24 Collector: Client

Parameter	Qualifier Res	sult	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Prop	portional Counting										
GFPC, Ra228, Liqu	uid "As Received"										
Radium-228		2.04	+/-1.11	1.64	3.00	pCi/L		JE1	03/13/24	1045 2575958	1
Rad Radium-226											
Lucas Cell, Ra226,	Liquid "As Received"										
Radium-226		2.88	+/-0.768	0.647	1.00	pCi/L		MJ2	03/17/24	0838 2574135	2
The following Ana	alytical Methods were p	erfo	rmed:								
Method	Description	Analyst Comments									
1	EPA 904.0/SW846 9	320 N	Modified								
2	EPA 903.1 Modified	8									

Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			84.2	(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 6 of 36 SDG: 656481

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 19, 2024

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90615 Sample ID: 656481003

Matrix: GW

Collect Date: 20-FEB-24 11:13
Receive Date: 23-FEB-24
Collector: Client

 Project:
 SOOP00119

 Client ID:
 SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Bat	ch Method
Rad Gas Flow Propo	rtional Counting	Ž.									
GFPC, Ra228, Liquid	d "As Received"										
Radium-228	U	-1.32	+/-0.870	1.89	3.00	pCi/L		JE1	03/13/24	1045 2575	058 1
Rad Radium-226											
Lucas Cell, Ra226, L	iquid "As Recei	ved"									
Radium-226		1.91	+/-0.631	0.560	1.00	pCi/L		MJ2	03/17/24	0838 2574	35 2
The following Analy	tical Methods w	ere perfe	ormed:								
Method	Description		Analyst Comments								
1	EPA 904.0/SW	/846 9320	Modified								

2 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

88.1 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 7 of 36 SDG: 656481

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 19, 2024

(15%-125%)

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90614 Sample ID: 656481004

Matrix: GW

Collect Date: 20-FEB-24 13:07
Receive Date: 23-FEB-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propo	ortional Counting										
GFPC, Ra228, Liqui	id "As Received"										
Radium-228	U	-2.70	+/-0.807	2.12	3.00	pCi/L		JE1	03/13/24	1045 2575958	1
Rad Radium-226											
Lucas Cell, Ra226, I	Liquid "As Receiv	ved"									
Radium-226		6.88	+/-1.16	0.596	1.00	pCi/L		MJ2	03/17/24	0838 2574135	2
The following Analy	ytical Methods w	ere perfe	ormed:								
Method	Description					8	Analy	st Commen	ts		

1	EPA 904.0/SW846 9320 Modified				
2	EPA 903.1 Modified				
Surrogate/Tracer Recor	very Test	Result	Nominal	Recovery%	Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Result Nominal Recovery
77.6

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 8 of 36 SDG: 656481

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 19, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90617 Sample ID: 656481005

Matrix: GW

Collect Date: 20-FEB-24 09:51
Receive Date: 23-FEB-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "	'As Received"										
Radium-228	U	-1.48	+/-0.873	2.00	3.00	pCi/L		JE1	03/13/24	1045 2575958	1
Rad Radium-226											
Lucas Cell, Ra226, Liqu	uid "As Recei	ved"									
Radium-226		3.90	+/-0.882	0.387	1.00	pCi/L		MJ2	03/17/24	0838 2574135	2
The following Analytic	cal Methods w	ere perfe	ormed:								

Method Description Analyst Comments

EPA 904.0/SW846 9320 Modified

Analyst Comments

EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

77.3 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 9 of 36 SDG: 656481

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 19, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90632 Sample ID: 656481006

Matrix: GW

Collect Date: 20-FEB-24 14:21
Receive Date: 23-FEB-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Prop	ortional Counting										
GFPC, Ra228, Liqu	id "As Received"										
Radium-228	U	-3.62	+/-0.859	2.26	3.00	pCi/L		JE1	03/13/24	1045 2575958	1
Rad Radium-226											
Lucas Cell, Ra226,	Liquid "As Recei	ved"									
Radium-226	U	0.697	+/-0.497	0.717	1.00	pCi/L		MJ2	03/17/24	0910 2574135	2
The following Ana	lytical Methods w	ere perfe	ormed:								
Method	Description					5	Analys	st Comment	S		

	A 903.1 Modified				
Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			87.2	(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

EPA 904.0/SW846 9320 Modified

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 10 of 36 SDG: 656481

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 19, 2024

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90611 Sample ID: 656481007

Matrix: GW

Collect Date: 19-FEB-24 14:15
Receive Date: 23-FEB-24
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Pro	portional Counting	,									
GFPC, Ra228, Lie	quid "As Received"	ř.									
Radium-228		1.85	+/-1.06	1.54	3.00	pCi/L		JE1	03/13/24	1045 2575958	1
Rad Radium-226											
Lucas Cell, Ra226	6, Liquid "As Recei	ved"									
Radium-226		0.552	+/-0.322	0.325	1.00	pCi/L		MJ2	03/17/24	0910 2574135	2
The following Ar	nalytical Methods w	vere perfor	rmed:								
Method	Description						Analyz	ct Common	te		

Method Description
1 EPA 904.0/SW846 9320 Modified

EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

72.5 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 11 of 36 SDG: 656481

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 19, 2024

03/17/24 0910 2574135

SOOP00119

SOOP001

MJ2

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90612 Sample ID: 656481008

Matrix: GW

Collect Date: 19-FEB-24 14:20
Receive Date: 23-FEB-24
Collector: Client

Qualifier Result Uncertainty **MDC** RL Units PF Parameter DF Analyst Date Time Batch Method Rad Gas Flow Proportional Counting GFPC, Ra228, Liquid "As Received" Radium-228 1.26 +/-0.899 1.38 3.00 pCi/L JE1 03/13/24 1045 2575958 1 Rad Radium-226 Lucas Cell, Ra226, Liquid "As Received"

1.00

pCi/L

Project:

Client ID:

Radium-226 1.04 +/-0.525 The following Analytical Methods were performed:

 Method
 Description
 Analyst Comments

 1
 EPA 904.0/SW846 9320 Modified

 2
 EPA 903.1 Modified

0.612

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

77.5 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 12 of 36 SDG: 656481

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 19, 2024

SOOP00119

87.2

(15%-125%)

SOOP001

Company: Santee Cooper P.O. Box 2946101 Address:

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90625 Sample ID: 656481009

Matrix: GW

Collect Date: Receive Date: 23-FEB-24 Collector: Client

15-FEB-24 10:38

Project:

Client ID:

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Prop	ortional Counting										
GFPC, Ra228, Liqu	uid "As Received"										
Radium-228		1.53	+/-0.843	1.16	3.00	pCi/L		JE1	03/13/24	1045 2575958	1
Rad Radium-226											
Lucas Cell, Ra226,	Liquid "As Recei	ved"									
Radium-226		1.74	+/-0.545	0.325	1.00	pCi/L		MJ2	03/17/24	0910 2574135	2
The following Ana	alytical Methods w	ere perfe	ormed:								
Method	Description						Analy	st Comment	S		
1	EPA 904.0/SW	846 9320	Modified								

2 EPA 903.1 Modified Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 13 of 36 SDG: 656481

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 19, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90613 Sample ID: 656481010

Matrix: GW

Collect Date: 15-FEB-24 13:31 Receive Date: 23-FEB-24 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Prop	portional Counting	2									
GFPC, Ra228, Liq	uid "As Received"										
Radium-228	U	-0.280	+/-0.836	1.66	3.00	pCi/L		JE1	03/13/24	1045 2575958	1
Rad Radium-226											
Lucas Cell, Ra226,	, Liquid "As Recei	ved"									
Radium-226		1.02	+/-0.414	0.311	1.00	pCi/L		MJ2	03/17/24	0910 2574135	2
The following Ana	alytical Methods w	ere perfe	ormed:								
Method	Description					1	Analy	st Comment	S		

Method	Description	Analyst Comment
1	EPA 904.0/SW846 9320 Modified	

2 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 81.5 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 14 of 36 SDG: 656481

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 19, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90628 Sample ID: 656481011

Matrix: GW

Collect Date: 19-FEB-24 09:44
Receive Date: 23-FEB-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propor	tional Counting	Ž.									
GFPC, Ra228, Liquid	"As Received"										
Radium-228	U	-5.48	+/-0.846	2.60	3.00	pCi/L		JE1	03/13/24	1045 2575958	1
Rad Radium-226											
Lucas Cell, Ra226, Li	iquid "As Recei	ved"									
Radium-226		0.853	+/-0.429	0.500	1.00	pCi/L		MJ2	03/17/24	0910 2574135	2
The following Analy	tical Methods w	ere perfe	ormed:								
Method	Description	0				1	Analy	st Commen	ts		
1	EPA 904.0/SW	/846 9320	Modified								

2 EPA	903.1 Modified				
Surrogate/Tracer Recovery	Test	Result	Nominal	Recovery%	Acceptable Limits
Barium-133 Tracer	GFPC, Ra228, Liquid "As Received"			77.3	(15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 15 of 36 SDG: 656481

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 19, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90629 Sample ID: 656481012

Matrix: GW

Collect Date: 19-FEB-24 09:49
Receive Date: 23-FEB-24
Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Proporti	onal Counting										
GFPC, Ra228, Liquid "	'As Received"										
Radium-228	U	0.0686	+/-0.839	1.57	3.00	pCi/L		JE1	03/13/24	1046 2575958	1
Rad Radium-226											
Lucas Cell, Ra226, Liq	uid "As Recei	ved"									
Radium-226		0.741	+/-0.503	0.711	1.00	pCi/L		MJ2	03/17/24	0910 2574135	2
The following Analytic	cal Methods w	ere perfo	ormed:								
Method	Description	9					Analys	st Commen	ts		

Method	Description	Analyst Comment
1	EPA 904.0/SW846 9320 Modified	

2 EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

83 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 16 of 36 SDG: 656481

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 19, 2024

SOOP00119

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90627 Sample ID: 656481013

Matrix: GW

Collect Date: 19-FEB-24 11:05 Receive Date: 23-FEB-24 Collector: Client

Project: Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	st Date	Time Batch	Method
Rad Gas Flow Proportion	onal Counting										
GFPC, Ra228, Liquid "A	As Received"										
Radium-228	U	-0.281	+/-0.669	1.40	3.00	pCi/L		JE1	03/13/24	1046 2575958	1
Rad Radium-226											
Lucas Cell, Ra226, Liqu	iid "As Receiv	ved"									
Radium-226		1.72	+/-0.651	0.712	1.00	pCi/L		MJ2	03/17/24	0910 2574135	2
The following Analytic	al Methods w	ere perfo	rmed:								
Method	Description					I	Analys	st Comment	S		
1	EPA 904.0/SW	846 9320 1	Modified								
2	EPA 903.1 Mo	dified									

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits Barium-133 Tracer GFPC, Ra228, Liquid "As Received" (15%-125%) 76.8

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 17 of 36 SDG: 656481

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 19, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90626 Sample ID: 656481014

Matrix: GW

Collect Date: 19-FEB-24 12:49 Receive Date: 23-FEB-24 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Analy	yst Date	Time Batch	Method
Rad Gas Flow Prop	portional Counting										
GFPC, Ra228, Liqu	uid "As Received"										
Radium-228	U	-0.867	+/-0.665	1.56	3.00	pCi/L		JE1	03/13/24	1046 2575958	1
Rad Radium-226											
Lucas Cell, Ra226,	Liquid "As Receiv	ved"									
Radium-226	4-000	0.563	+/-0.362	0.392	1.00	pCi/L		MJ2	03/17/24	0943 2574135	2
The following Ana	alytical Methods w	ere perfe	ormed:								
Method	Description						Analy	st Comment	S		

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	
2	EPA 903.1 Modified	

EPA 903.1 Modified

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits Barium-133 Tracer GFPC, Ra228, Liquid "As Received" 73.8 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 18 of 36 SDG: 656481

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 19, 2024

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90630 Sample ID: 656481015

Matrix: GW

Collect Date: 15-FEB-24 11:25
Receive Date: 23-FEB-24
Collector: Client

Project: SOOP00119 Client ID: SOOP001

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time	e Batch	Method
Rad Gas Flow Propo	rtional Counting											-
GFPC, Ra228, Liqui	d "As Received"											
Radium-228	U	-2.47	+/-0.972	2.22	3.00	pCi/L		JE1	03/13/24	1046	2575958	1
Rad Radium-226												
Lucas Cell, Ra226, L	iquid "As Receiv	ved"										
Radium-226		1.74	+/-0.638	0.703	1.00	pCi/L		MJ2	03/17/24	0943	2574135	2
The following Analy	ytical Methods w	ere perfe	ormed:									
Method Description						1	Analys	st Commen	ts			
1	EDA 004 0/CW	946 0220	Madified									

1 EPA 904.0/SW846 9320 Modified
2 EPA 903.1 Modified
CONTRACTOR OF THE PROPERTY OF THE PROPERT

Surrogate/Tracer Recovery Test Result Nominal Recovery% Acceptable Limits

Barium-133 Tracer GFPC, Ra228, Liquid "As Received"

86.4 (15%-125%)

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 19 of 36 SDG: 656481

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Project:

Client ID:

Report Date: March 19, 2024

SOOP00119

SOOP001

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90623 Sample ID: 656481016

Matrix: GW

Collect Date: 15-FEB-24 12:20 Receive Date: 23-FEB-24 Collector: Client

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propo	ortional Counting	2									
GFPC, Ra228, Liqu	id "As Received"										
Radium-228		1.67	+/-0.985	1.46	3.00	pCi/L		JE1	03/13/24	1046 2575958	1
Rad Radium-226											
Lucas Cell, Ra226,	Liquid "As Recei	ved"									
Radium-226		0.581	+/-0.355	0.371	1.00	pCi/L		MJ2	03/17/24	0943 2574135	2
The following Anal	lytical Methods w	ere perfe	ormed:								
Method	Description						Analy	st Commen	ts		

Method	Description	Analyst Comments
1	EPA 904.0/SW846 9320 Modified	Ţ.
2	EPA 903.1 Modified	

Test

Surrogate/Tracer Recovery Result Nominal Recovery% Acceptable Limits Barium-133 Tracer GFPC, Ra228, Liquid "As Received" (15%-125%) 87.5

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level DL: Detection Limit PF: Prep Factor MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 20 of 36 SDG: 656481

2040 Savage Road Charleston SC 29407 - (843) 556-8171 - www.gel.com

Certificate of Analysis

Report Date: March 19, 2024

Company: Santee Cooper Address: P.O. Box 2946101

OCO3

Moncks Corner, South Carolina 29461

Contact: Ms. Jeanette Gilmetti Project: ABS Lab Analytical

Client Sample ID: AF90633 Sample ID: 656481017

Matrix: GW

Collect Date: 15-FEB-24 14:12
Receive Date: 23-FEB-24
Collector: Client

Project: SOOP00119 Client ID: SOOP001

83.8

(15%-125%)

Parameter	Qualifier	Result	Uncertainty	MDC	RL	Units	PF	DF Anal	yst Date	Time Batch	Method
Rad Gas Flow Propor	tional Counting	Ž.									
GFPC, Ra228, Liquid	l "As Received"										
Radium-228 Rad Radium-226	U	0.882	+/-0.750	1.19	3.00	pCi/L		JE1	03/13/24	1046 2575958	1
Lucas Cell, Ra226, L	iquid "As Recei		. / 0 200	0.255	1.00	0'7		1/12	02/17/24	0042 2574125	
Radium-226 The following Analy	tical Methods w	0.472 ere perfo		0.377	1.00	pCi/L		MJ2	03/17/24	0943 2574135	2
Method	Description						Analyst	Comment	S		
1	EPA 904.0/SW	/846 9320]	Modified				*				
2	EPA 903.1 Mo	dified									
Surrogate/Tracer Rec	overy Test				R	esult	Nomina	l Reco	very%	Acceptable L	imits

Notes:

Barium-133 Tracer

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

GFPC, Ra228, Liquid "As Received"

Column headers are defined as follows:

DF: Dilution Factor Lc/LC: Critical Level
DL: Detection Limit PF: Prep Factor
MDA: Minimum Detectable Activity RL: Reporting Limit

MDC: Minimum Detectable Concentration SQL: Sample Quantitation Limit

Page 21 of 36 SDG: 656481

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Report Date: March 19, 2024

Santee Cooper P.O. Box 2946101

OCO3

Moncks Corner, South Carolina

Contact: Ms. Jeanette Gilmetti

Workorder: 656481

Parmname			NOM	Sample	Qual	QC	Units	RPD%	REC%	Range	Anlst	Date Time
Rad Gas Flow Batch 257	75958											
QC1205664335 Radium-228	656481001	DUP	Uncertainty	2.17 +/-1.36	U	1.13 +/-0.775	pCi/L	62.7		(0% - 100%)	JE1	03/13/24 10:46
QC1205664336 Radium-228	LCS		73.4 Uncertainty			59.4 +/-3.74	pCi/L		80.9	(75%-125%)		03/13/24 10:46
QC1205664334 Radium-228	MB		Uncertainty		U	0.782 +/-0.753	pCi/L					03/13/24 10:46
Rad Ra-226 Batch 257	74135											
QC1205661277 Radium-226	656481001	DUP	Uncertainty	0.987 +/-0.402		1.33 +/-0.520	pCi/L	29.9		(0% - 100%)	MJ2	03/17/24 09:43
QC1205661279 Radium-226	LCS		26.9 Uncertainty			20.9 +/-1.99	pCi/L		77.5	(75%-125%)		03/17/24 09:43
QC1205661276 Radium-226	MB		Uncertainty		U	0.000 +/-0.264	pCi/L					03/17/24 09:43
QC1205661278 Radium-226	656481001	MS	131 Uncertainty	0.987 +/-0.402		104 +/-9.80	pCi/L		78.8	(75%-125%)		03/17/24 09:43

Notes:

Counting Uncertainty is calculated at the 95% confidence level (1.96-sigma).

The Qualifiers in this report are defined as follows:

- U Analyte was analyzed for, but not detected above the MDL, MDA, MDC or LOD.
- J Value is estimated
- X Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- H Analytical holding time was exceeded
- < Result is less than value reported

Page 22 of 36 SDG: 656481

Page 1 of 2

2040 Savage Road Charleston, SC 29407 - (843) 556-8171 - www.gel.com

QC Summary

Page 2 of 2 NOM Sample Qual QC Units RPD% REC% Date Time **Parmname** Range Anlst

Result is greater than value reported

656481

- Gamma Spectroscopy--Uncertain identification UI
- BD Results are either below the MDC or tracer recovery is low
- h Preparation or preservation holding time was exceeded
- R Sample results are rejected
- RPD of sample and duplicate evaluated using +/-RL. Concentrations are <5X the RL. Qualifier Not Applicable for Radiochemistry.
- N/A RPD or %Recovery limits do not apply.
- ND Analyte concentration is not detected above the detection limit
- M M if above MDC and less than LLD
- NJ Consult Case Narrative, Data Summary package, or Project Manager concerning this qualifier
- Failed analysis. FA

Workorder:

- UJ Gamma Spectroscopy--Uncertain identification
- One or more quality control criteria have not been met. Refer to the applicable narrative or DER. Q
- K Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- UL Not considered detected. The associated number is the reported concentration, which may be inaccurate due to a low bias.
- Analyte present. Reported value may be biased low. Actual value is expected to be higher. L
- N1See case narrative
- Y Other specific qualifiers were required to properly define the results. Consult case narrative.
- ** Analyte is a Tracer compound
- REMP Result > MDC/CL and < RDL M
- J See case narrative for an explanation

N/A indicates that spike recovery limits do not apply when sample concentration exceeds spike conc. by a factor of 4 or more or %RPD not applicable.

- ^ The Relative Percent Difference (RPD) obtained from the sample duplicate (DUP) is evaluated against the acceptance criteria when the sample is greater than five times (5X) the contract required detection limit (RL). In cases where either the sample or duplicate value is less than 5X the RL, a control limit of +/- the RL is used to evaluate the DUP result.
- * Indicates that a Quality Control parameter was not within specifications.

For PS, PSD, and SDILT results, the values listed are the measured amounts, not final concentrations.

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless qualified on the QC Summary.

Page 23 of 36 SDG: 656481

Technical Case Narrative Santee Cooper SDG #: 656481

Radiochemistry

Product: GFPC, Ra228, Liquid

<u>Analytical Method:</u> EPA 904.0/SW846 9320 Modified <u>Analytical Procedure:</u> GL-RAD-A-063 REV# 5

Analytical Batch: 2575958

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
656481001	AF90610
656481002	AF90631
656481003	AF90615
656481004	AF90614
656481005	AF90617
656481006	AF90632
656481007	AF90611
656481008	AF90612
656481009	AF90625
656481010	AF90613
656481011	AF90628
656481012	AF90629
656481013	AF90627
656481014	AF90626
656481015	AF90630
656481016	AF90623
656481017	AF90633
1205664334	Method Blank (MB)
1205664335	656481001(AF90610) Sample Duplicate (DUP)
1205664336	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Preparation Information

Homogenous Matrix

Samples 1205664335 (AF90610DUP), 656481001 (AF90610) and 656481004 (AF90614) were non-homogenous matrix. slightly yellow 1205664335 (AF90610DUP), 656481001 (AF90610) and 656481004 (AF90614).

Technical Information

Negative > 3 sigma TPU

Sample results were more negative than the three sigma TPU. The background control charts were examined and the

Page 24 of 36 SDG: 656481

detectors were determined to be fully functional.

Sample	Analyte	Value				
656481004 (AF90614)	Radium-228	Negative Result > 3 sigma value				
656481005 (AF90617)	Radium-228	Negative Result > 3 sigma value				
656481006 (AF90632)	Radium-228	Negative Result > 3 sigma value				
656481011 (AF90628)	Radium-228	Negative Result > 3 sigma value				
656481015 (AF90630)	Radium-228	Negative Result > 3 sigma value				

<u>Product:</u> Lucas Cell, Ra226, Liquid <u>Analytical Method:</u> EPA 903.1 Modified

Analytical Procedure: GL-RAD-A-008 REV# 15

Analytical Batch: 2574135

The following samples were analyzed using the above methods and analytical procedure(s).

GEL Sample ID#	Client Sample Identification
656481001	AF90610
656481002	AF90631
656481003	AF90615
656481004	AF90614
656481005	AF90617
656481006	AF90632
656481007	AF90611
656481008	AF90612
656481009	AF90625
656481010	AF90613
656481011	AF90628
656481012	AF90629
656481013	AF90627
656481014	AF90626
656481015	AF90630
656481016	AF90623
656481017	AF90633
1205661276	Method Blank (MB)
1205661277	656481001(AF90610) Sample Duplicate (DUP)
1205661278	656481001(AF90610) Matrix Spike (MS)
1205661279	Laboratory Control Sample (LCS)

The samples in this SDG were analyzed on an "as received" basis.

Data Summary:

All sample data provided in this report met the acceptance criteria specified in the analytical methods and procedures for initial calibration, continuing calibration, instrument controls and process controls where applicable, with the following exceptions.

Miscellaneous Information

Page 25 of 36 SDG: 656481

Additional Comments

The matrix spike, 1205661278 (AF90610MS), aliquot was reduced to conserve sample volume.

Certification Statement

Where the analytical method has been performed under NELAP certification, the analysis has met all of the requirements of the NELAC standard unless otherwise noted in the analytical case narrative.

Page 26 of 36 SDG: 656481

Send report to lcwillia@santeecooper.com & sherri.levy@santeecooper.com

Chain of Custody

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient:			Date Results Needed by:				Project/Task/Unit #: Re						Rerun reques	Rerun request for any flagged Q			QC		
LINDA	-WILLI	MS_@san	teeco	oper.com							125915 / JM02.09.601.1/ 3650					No			
														E	Analysis Group				
(Interna only)		Sample Lo Descriptio			Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Me Rep Mis Any	thod # porting lim sc. sample y other not	info	RAD 226	RAD 228		
AF90	610	WAP-1	3		2/21/24	1015	WOK	2	P	G	GW	2				×	×		
1	31	WAP-2	8		1	1103			1	1	1	1				1	1		
AF906	15	WAP-I	+C		2/20/24	เแร													
1	14	WAP-K	HB		1	1307													
AF90	617	WAP-16	>			পে 5।													
1	32	WAP- 25	R		1	1421													
	11	WAP-I	+		2/19/24	1415											Ш		
	12	WAP-IL	+ Du	P	1	1420													
	25	WAP-23	3		2/15/24	1038			\perp								Ц		
1	13	WAP - 19	A		1	1331		1	1	1	1	1				1	1		
Refinq	uished by:	Employ	ee#	Date	Time	Recei	ved by:		mploye	e#	Date	Marie I	Time	Sampl	e Receiving (Interna P (°C):	Use O			
m	1	_ 368	51	2/23/24	0931	01	1		GEL	_ 2	423/	24	0931	1					-
Reling	uished by:			Date	Time	- 0/1/07						Time	Correct nH: Ves No						
.11	20	661		227.24	1110	9-1	7		SEL	. 2	12	128	1250	Presen	rvative Lot#:				
Relinq	uished by:	Employ	ee# 9	Date	1550 Winte	Recei	ved by:		mployee		Date		Time						
								200			AND ASSOCIA	10000		Date/	Time/Init for preser	vative:			
		ETALS (a	11)	Nut	rients	D/II	SC.	A D	G	ypsur			Coa		Floral		0	11	
□Ag	OC	u 🗆 S	b	O TO	CHEST COMPANY	D BTEX	<u>3C.</u>		Wallh	SCHOOL SEC			Ultimate		Flyash	Te	- 100	il Qual	
□ AI	□ Fe	SANTA SANTA	(22) A	DO	C	□ Naphthalene			Gypsum(all			☐ Ultimate ☐ Ammonia ☐ LOI		D	%Mo	isture			
□ As		OK OSn OTP/TPO4		THE RESERVE OF THE PARTY OF THE	□ THM/HAA □ VOC			below) □ AIM				□ Ash		□ % Carbon		Color Acidit			
ОВ	BULL			□ Oil & Grease □ E. Coli			DTOC				□ Sulfur □ BTUs		☐ Mineral Analysis		Dielectr IFT	ric Streng	th		
□ Ba	O M	Market British		□ CI		□ Total C	oliform			otal meta oluble M			□ Volatile	Matter	□ Sieve	01	Dissol	ived Gas	ses
□ Be	O M	S. Contract of the last		□ NO □ Br	CONTRACTOR AND DESCRIPTION OF THE PERSON OF	□ pH □ Dissolve	ed As		□ Pt	urity (Ca Moistu	SO4)	0	CHN ther Tests:		□ % Moisture		sed O Flashp		
□ Ca	□ M		CONTRACTOR OF THE	_ ONO	3	□ Dissolv	ed Fe		D St	elfites			XRF Scan		NPDES	- 01	Metals	s in oil	
□ Cd	O N	AND REAL PROPERTY.	100	□ SO	4	□ Rad 226		A DO	□ pl	Horides			HGI Fineness		□ Oil & Grease		(As,C Hg)	d,Cr,Ni,	Pb
□ Co	O N					□ PCB □ Particle Size □ Particulat			rticulate Matter				,						
□ Cr	□ Pt		IVI		CHANN		Water Land	100	□ Sulfu			1000		E Part	The Statement Labor.	- 6	OF ER	1	

Chain of Custody

Santee Cooper One Riverwood Drive Moncks Corner, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient:			Date Results Needed by:				Project/Task/Unit #:						Rerun reques	Rerun request for any flagged QC			
LINDA	4. WILLIA	MS _@santee	cooper.com		/			125	915) <u>IN</u>	102.0	9. Gøl. l	36500	Yes	No	<u> </u>	
																Analysi	s Group
31 3125 7051	vorks ID # rnal use	Sample Locati Description	on/	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see	Re Mi An	Comme ethod # porting limit sc. sample in y other notes		194D 226	RAD 228	
AP	10628	WAP-26		2/19/24	0944	WJK	2	P	G	GW	2				×	×	
	29	WAP - 26	DUP		0949				1	1	1				1	1	
	27	WAP-25			1105												
1	26	WAP-24		.]	1249	1	1	1	1	1	-1				1	1	
AF	70630	2.7		2/15/24	1125			1	1	1	1				X	К	
1	23	WAT			1220										1	1	
		WAP-29	100	1	1412	-1	I	1		Ī	1				1	1	
		E. A. V. Ha Arc	- Ins	aller mingresses													
		3.493	-														
L,		-		i													
Reli	nquished by:	Employee#	Date	Time	Receive	ed by:	En	nployee i	#	Date		Time	Sample R	eceiving (Internal	Use On	ly)	
tr	- Un	- 36851		931	. 06	0		GEL		/23/2	4	p931	TEMP (°	C):	Initial		
Reli	nquished by:	Employee#	Date	Time	Receive	ed by:	_	nployee #		Date		Time	Correct p	H: Yes No			
1	201	111	1 -7	(1)	7-1	1	-	6E	1 2	[h	1000	Preserva	tive Lot#:			
Reli	nquished by:	Employee#	2-23/24/ Date /	Time	Receive	ed by:	En	ployee #		Date	27	LSSO Time	p = = =				
				SHALLOW STATE OF			PESSO						Date/Tim	e/Init for preserv	ative:		
	□ ME	TALS (all)	Nutri	onts	MIC	_		C	2511100	J. D. F.				MALE CONTRACTOR			
□ Ag	☐ Cu	NAME OF TAXABLE PARTY OF TAXABLE PARTY.	□ TOC	TOTAL STREET	MIS BTEX	<u>c.</u>	D	Wallbox	osum ard		п	<u>Coal</u>	STATE IN CO.	<u>Flyash</u>		Oil	
□ As	□ K	□ Sn	DOC TP/T		☐ Naphthale ☐ THM/HA		i de la constante de la consta	Gyps	um(al	I		□ % Mois		Ammonia LOI	0 9	ns. Oil Moist	
□В	□ Li	□ Sr	□ NH3-	N C	VOC			below AIN			10000000	☐ Ash ☐ Sulfur		% Carbon		olor cidity	
□ Ba	□Mg	ATT OF REAL PROPERTY.	□F		□ Oil & Gre □ E. Coli	ase		□ Tota	l metal			□ BTUs		Mineral Analysis		electric S	strength
□Ве	□ Mr	OFFICE STATE			Total Coli	form		□ Solu	ble Me	tals		□ Volatile □ CHN		Sieve % Moisture	□ D	issolve	d Gases
□ Ca	□Мо	O U	□ Br		Dissolved			□% M	ty (CaS foisture		Otl	her Tests:		70 Moisture		d Oil ashpoir	it
□ Cd	□Na	□ Zn	□ NO3 □ SO4		Dissolved Rad 226	re		□ Sulfi	ites		O X	RF Scan		NPDES	LIM	etals in	
□ Co	□Ni	□ Hg			Rad 228 PCB			□ Chlo			□F	ineness	STANCE STREET, TOUGHT AND ADDRESS.	Oil & Grease As	H	g)	
□ Cr	□Pb	□ CrVI					0	□ Parti Sulfur	cle Size		LI P	articulate Ma		TSS	GO		

GEL	Laboratories LLC
-----	------------------

SAMPLE RECEIPT & REVIEW FORM

Client: SOOP	SDG/AR/COC/Work Order: 656485								
Received By: QG	Date Received: 2 123 /24								
Carrier and Tracking Number	FedEx Express FedEx Ground UPS Field Services Courier Other								
Carrer and Fracking Humber	nla								
Suspected Hazard Information	*If Net Counts > 100cpm on samples not marked "radioactive", contact the Radiation Safety Group for further investigation.								
A)Shipped as a DOT Hazardous?	Hazard Class Shipped: UN#: If UN2910, Is the Radioactive Shipment Survey Compliant? YesNo								
B) Did the client designate the samples are to be received as radioactive?	COC notation or radioactive stickers on containers equal client designation.								
C) Did the RSO classify the samples as radioactive?	Maximum Net Counts Observed® (Observed Counts - Area Background Counts): Classified as: Rad 1 Rad 2 Rad 3								
D) Did the client designate samples are hazardous?	COC notation or hazard labels on containers equal client designation. If D or E is yes, select Hazards below.								
E) Did the RSO identify possible hazards?	PCB's Flammable Foreign Soil RCRA Asbestos Beryllium Other:								
Sample Receipt Criteria									
Shipping containers received intact and sealed?	Circle Applicable: Seals broken Damaged container Leaking container Other (describe)								
2 Chain of custody documents included with shipment?	Circle Applicable: Client contacted and provided COC COC created upon receipt								
3 Samples requiring cold preservation within (0 ≤ 6 deg. C)?*	Preservation Method: Wet Ice Ice Packs Dry ice None Other: *all temperatures are recorded in Celsius TEMP: 20 5								
4 Daily check performed and passed on IR temperature gun?	Temperature Device Serial #: <u>IR1-23</u> Secondary Temperature Device Serial # (If Applicable):								
5 Sample containers intact and sealed?	Circle Applicable: Seals broken Damaged container Leaking container Other (describe)								
6 Samples requiring chemical preservation at proper pH?	Sample ID's and Containers Affected: If Preservation added, Lot#:								
7 Do any samples require Volatile Analysis?	If Yes, are Encores or Soil Kits present for solids? YesNoNA(If yes, take to VOA Freezer) Do liquid VOA vials contain acid preservation? YesNoNA(If unknown, select No) Are liquid VOA vials free of headspace? YesNoNA Sample ID's and containers affected:								
8 Samples received within holding time?	ID's and tests affected:								
9 Sample ID's on COC match ID's on bottles?	ID's and containers affected:								
10 Date & time on COC match date & time on bottles?	Circle Applicable: No dates on containers No times on containers COC missing info Other (describe)								
11 Number of containers received match number indicated on COC?	Circle Applicable: No container count on COC Other (describe)								
12 Are sample containers identifiable as GEL provided by use of GEL labels? 12 COC form is properly signed in	Circle Applicable: Not relinquished Other (describe)								
relinquished/received sections? Comments (Use Continuation Form if needed):	Tr. Salat (agrativa)								
	ok29 and Afgole28, the client label don't match. The WAP-26 is with client label and vice versa.								
label and GEL	label don't match. The WAP-24 is								
labeled as dup v	with client label and vice versa.								
PM (or PMA) review	total dilai a Milairu								

Page 29 of 36 SDG: 656481

Max Gloth

From: Jessica Ward

Sent: Monday, February 26, 2024 12:30 PM

To: Sherri Levy
Cc: Team Robinson

Subject: Re: Question about container labels for samples for Ra226/Ra228 delivered Friday 02/23

Sherri,

Thank you for confirming I have labeled as requested.

Thank you,
Jessica Ward
Project Manager Assistant

2040 Savage Road, Charleston, SC 29407

Office Direct: 843.556.8171 ext. 4523 | Office Main: 843.556.8171 | Fax: 843.766.1178

Email: Jessica.Ward@gel.com

From: Sherri Levy <Sherri.Levy@santeecooper.com>

Sent: Monday, February 26, 2024 12:21 PMTo: Jessica Ward <Jessica.Ward@gel.com>Cc: Team Robinson <Team.Robinson@gel.com>

Subject: Re: Question about container labels for samples for Ra226/Ra228 delivered Friday 02/23

[EXTERNAL EMAIL] DO NOT CLICK links or attachments unless you recognize the sender and know the content is safe.

Please follow the GEL labeled sample (handwritten info). The labels are actually swapped. Please let me know if you need further clarification. Sorry about that and thanks for catching it.

Warm Regards,

Sherri J. Levy

Laboratory Specialist III Environmental Resources 2843.761.8000 ext. 5709

*sibrown@santeecooper.com

From: Jessica Ward < Jessica. Ward@gel.com > Sent: Monday, February 26, 2024 12:13 PM

To: Sherri Levy <Sherri.Levy@santeecooper.com>

Cc: Team Robinson < Team. Robinson@gel.com>

Subject: [EXTERNAL SENDER] Re: Question about container labels for samples for Ra226/Ra228 delivered Friday 02/23

Sherri,

I just wanted to follow up on the email sent Saturday in case it was lost in the Monday shuffle. Can you confirm how we should label the containers fro WAP-26/WAP-26 DUP, by following the GEL container label or the affixed client label. Pictures are on the email in this chain.

Thank you,
Jessica Ward
Project Manager Assistant

2040 Savage Road, Charleston, SC 29407

Office Direct: 843.556.8171 ext. 4523 | Office Main: 843.556.8171 | Fax: 843.766.1178

Email: Jessica.Ward@gel.com

From: Jessica Ward < Jessica. Ward@gel.com > Sent: Saturday, February 24, 2024 12:23 PM

To: Brown, Sherri <sherri.brown@santeecooper.com> **Cc:** Team Robinson <Team.Robinson@gel.com>

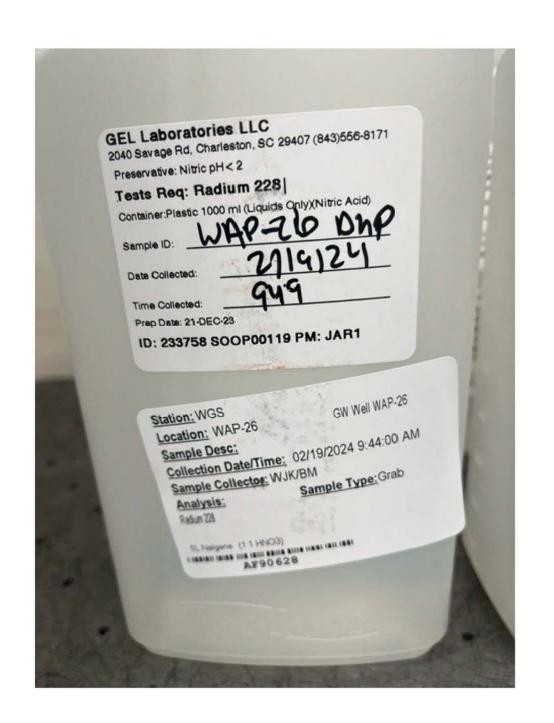
Subject: Question about container labels for samples for Ra226/Ra228 delivered Friday 02/23

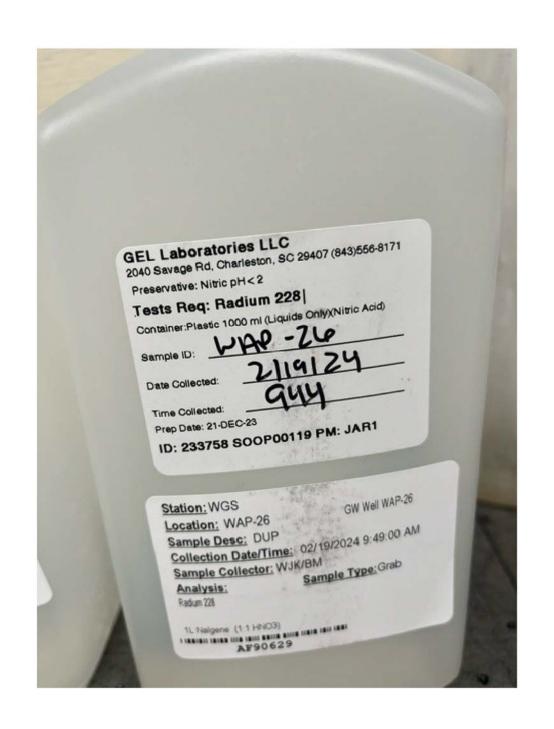
Sherri,

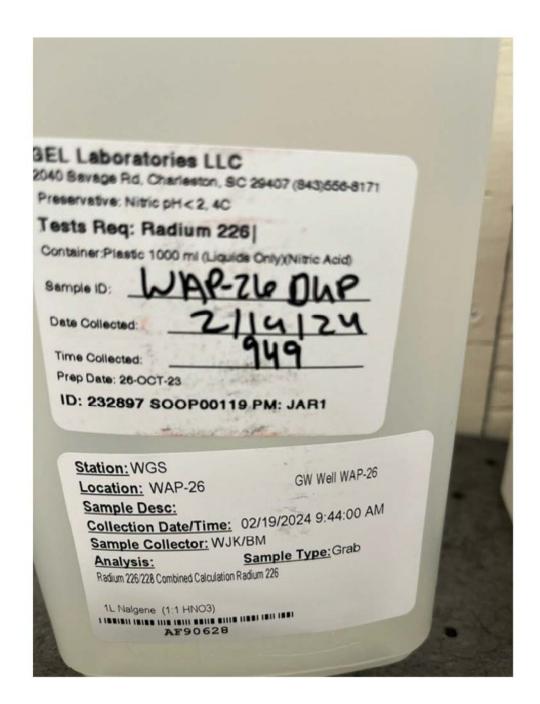
Attached are photos of the containers received for Ra226/228 analysis brought by courier on Friday 02/23. The containers for Sample ID AF90628 WAP-26 & AF90629 WAP-26 DUP have the labels that are switched on the containers (there is a DUP label on the non-DUP) for example. The receiving team wanted to ensure we labeled these correctly, can you please let me know should we label the containers based off of your labels affixed or the handwritten labels that GEL supplied on the containers for identifying the correct container for the sample IDs?

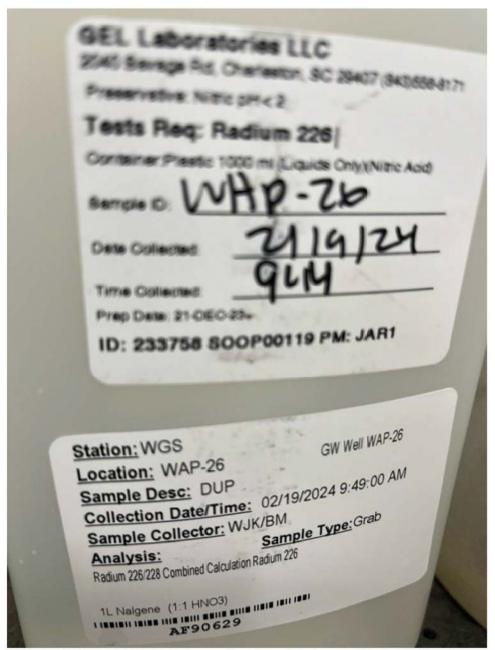
Thank you,
Jessica Ward
Project Manager Assistant

2040 Savage Road, Charleston, SC 29407


Office Direct: 843.556.8171 ext. 4523 | Office Main: 843.556.8171 | Fax: 843.766.1178







Email: Jessica.Ward@gel.com

CONFIDENTIALITY NOTICE: This e-mail and any files transmitted with it are the property of The GEL Group, Inc. and its affiliates. All rights, including without limitation copyright, are reserved. The proprietary information contained in this e-mail message, and any files transmitted with it, is intended for the use of the recipient(s) named above. If the reader of this e-mail is not the intended recipient, you are hereby notified that you have received this e-mail in error and that any review, distribution or copying of this e-mail or any files transmitted with it is strictly prohibited. If you have received this e-mail in error, please notify the sender immediately and delete the original message and any files transmitted. The unauthorized use of this e-mail or any files transmitted with it is prohibited and disclaimed by The GEL Group, Inc. and its affiliates.

WARNING!

This e-mail message originated outside of Santee Cooper.

Do not click on any links or open any attachments unless you are confident it is from a trusted source.

If you have questions, please call the Technology Service Desk at Ext. 7777.

List of current GEL Certifications as of 19 March 2024

State	Certification
Alabama	42200
Alaska	17-018
Alaska Drinking Water	SC00012
Arkansas	88-00651
CLIA	42D0904046
California	2940
Colorado	SC00012
Connecticut	PH-0169
DoD ELAP/ ISO17025 A2LA	2567.01
Florida NELAP	E87156
Foreign Soils Permit	P330-15-00283, P330-15-00253
Georgia	SC00012
Georgia SDWA	967
Hawaii	SC00012
Idaho	SC00012
Illinois NELAP	200029
Indiana	C-SC-01
Kansas NELAP	E-10332
Kentucky SDWA	KY90129
Kentucky Wastewater	KY90129
Louisiana Drinking Water	LA024
Louisiana NELAP	03046 (AI33904)
Maine	2023019
Maryland	270
Massachusetts	M-SC012
Massachusetts PFAS Approv	Letter
Michigan	9976
Mississippi	SC00012
Nebraska	NE-OS-26-13
Nevada	SC000122024-05
New Hampshire NELAP	2054
New Jersey NELAP	SC002
New Mexico	SC00012
New York NELAP	11501
North Carolina	233
North Carolina SDWA	45709
North Dakota	R-158
Oklahoma	2023-152
Pennsylvania NELAP	68-00485
Puerto Rico	SC00012
S. Carolina Radiochem	10120002
Sanitation Districts of L	9255651
South Carolina Chemistry	10120001
Tennessee	TN 02934
Texas NELAP	T104704235-23-21
Utah NELAP	SC000122023-38
Vermont	VT87156
Virginia NELAP	460202
Washington	C780

11 12

13

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 2/22/2024 1:44:35 PM

JOB DESCRIPTION

125915/JM02.08.G01.3/36500

JOB NUMBER

680-246795-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 2/22/2024 1:44:35 PM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	16
QC Association	17
Chronicle	18
Chain of Custody	20
Receipt Checklists	21
Certification Summary	22

6

Λ

5

6

8

9

10

12

13

14

Case Narrative

Client: South Carolina Public Service Authority

Project: 125915/JM02.08.G01.3/36500

Job ID: 680-246795-1 Eurofins Savannah

Job Narrative 680-246795-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 2/15/2024 10:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 14.8°C.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Savannah

Page 4 of 22 2/22/2024

2

Job ID: 680-246795-1

3

4

5

7

8

4 4

12

13

114

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-246795-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-246795-1	AF90598	GW	02/08/24 14:39	02/15/24 10:30
680-246795-2	AF90605	GW	02/07/24 10:07	02/15/24 10:30
680-246795-3	AF90606	GW	02/07/24 10:12	02/15/24 10:30
680-246795-4	AF90604	GW	02/07/24 11:12	02/15/24 10:30
680-246795-5	AF90596	GW	02/06/24 10:25	02/15/24 10:30
680-246795-6	AF90597	GW	02/06/24 11:19	02/15/24 10:30
680-246795-7	AF90599	GW	02/06/24 12:45	02/15/24 10:30

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-246795-1

Method	Method Description	Protocol	Laboratory
7470A	Mercury (CVAA)	SW846	EET SAV
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Definitions/Glossary

Client: South Carolina Public Service Authority Job ID: 680-246795-1 Project/Site: 125915/JM02.08.G01.3/36500

Qualifiers

Metals

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery %R CFL Contains Free Liquid Colony Forming Unit CFU CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) EDL Limit of Detection (DoD/DOE) LOD LOQ Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level" MCL MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count TNTC

Detection Summary

Project/Site: 125915/JM02.08.G01.3/36500	000 IB. 000 240100 1
Client Sample ID: AF90598	Lab Sample ID: 680-246795-1
No Detections.	
Client Sample ID: AF90605	Lab Sample ID: 680-246795-2
No Detections.	
Client Sample ID: AF90606	Lab Sample ID: 680-246795-3
No Detections.	
Client Sample ID: AF90604	Lab Sample ID: 680-246795-4
No Detections.	
Client Sample ID: AF90596	Lab Sample ID: 680-246795-5
No Detections.	
Client Sample ID: AF90597	Lab Sample ID: 680-246795-6
No Detections.	
Client Sample ID: AF90599	Lab Sample ID: 680-246795-7
No Detections.	

This Detection Summary does not include radiochemical test results.

Client: South Carolina Public Service Authority

Eurofins Savannah

2/22/2024

Page 8 of 22

2

Job ID: 680-246795-1

2

__

7

10

11

40

4 /

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-246795-1

Client Sample ID: AF90598 Lab Sample ID: 680-246795-1 Date Collected: 02/08/24 14:39

Matrix: GW

Date Received: 02/15/24 10:30

Method: SW846 7470A - Mercury (CVAA)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	0.200	U	0.200		ug/L		02/20/24 10:58	02/20/24 16:32	1

Eurofins Savannah

Page 9 of 22 2/22/2024

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-246795-1

Lab Sample ID: 680-246795-2

Matrix: GW

Date Collected: 02/07/24 10:07 Date Received: 02/15/24 10:30

Client Sample ID: AF90605

Method: SW846 7470A - Mercury (CVAA) RL Dil Fac Result Qualifier MDL Unit Prepared Analyzed Mercury 0.200 U 0.200 ug/L 02/20/24 10:58 02/20/24 16:35

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-246795-1

Client Sample ID: AF90606 Lab Sample ID: 680-246795-3 Date Collected: 02/07/24 10:12

Date Received: 02/15/24 10:30

Matrix: GW

Method: SW846 7470A - Mercury (CVA	A)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		02/20/24 10:58	02/20/24 16:37	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-246795-1

Client Sample ID: AF90604 Lab Sample ID: 680-246795-4 Date Collected: 02/07/24 11:12

Matrix: GW

Date Received: 02/15/24 10:30

Method: SW846 7470A - Mercury (C	VAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		02/20/24 10:58	02/20/24 16:40	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-246795-1

Lab Sample ID: 680-246795-5

Client Sample ID: AF90596 Date Collected: 02/06/24 10:25

Date Received: 02/15/24 10:30

Matrix: GW

Method: SW846 7470A - Mercury (CVAA)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	0.200	U	0.200		ug/L		02/20/24 10:58	02/20/24 16:24	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-246795-1

Lab Sample ID: 680-246795-6 **Client Sample ID: AF90597** Date Collected: 02/06/24 11:19

Matrix: GW

Date Received: 02/15/24 10:30

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result	Qualifier	RL	MDL Uni	t D	Prepared	Analyzed	Dil Fac
Mercury	0.200	П	0.200	ug/l		02/20/24 10:58	02/20/24 16:51	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-246795-1

Client Sample ID: AF90599 Lab Sample ID: 680-246795-7 Date Collected: 02/06/24 12:45

Matrix: GW

Date Received: 02/15/24 10:30

Method: SW846 7470A - Mercury (CV)	4A)								
Analyte	Result	Qualifier	RL	MDL U	nit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200	u	g/L		02/20/24 10:58	02/20/24 16:53	1

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-246795-1

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-823551/1-A

Matrix: Water

Analysis Batch: 823745

MB MB

Analyte

Result Qualifier

Sample Sample

0.200 U

0.200 U

Result Qualifier

0.200 U

RL 0.200 MDL Unit ug/L

Prepared 02/20/24 10:58

02/20/24 15:49

Client Sample ID: Method Blank

Dil Fac Analyzed

Prep Type: Total/NA

Prep Batch: 823551

Prep Type: Total/NA **Prep Batch: 823551**

Lab Sample ID: LCS 680-823551/2-A

Lab Sample ID: 400-251111-H-1-C MS

Matrix: Water

Mercury

Mercury

Analyte

Mercury

Analyte

Mercury

Analysis Batch: 823745

Analysis Batch: 823745

Analyte

Spike Added 2.50

LCS LCS Result Qualifier 2.542

MS MS

0.9942

Result Qualifier

Unit D ug/L

%Rec Limits 102

%Rec

80 _ 120

Client Sample ID: Lab Control Sample

%Rec

Client Sample ID: Matrix Spike

Prep Type: Total/NA **Prep Batch: 823551**

Prep Type: Total/NA **Prep Batch: 823551**

%Rec

Client Sample ID: Matrix Spike Duplicate

Limits

80 _ 120

Lab Sample ID: 400-251111-H-1-D MSD

Matrix: Water

Matrix: Water

Analysis Batch: 823745

Sample Sample Result Qualifier

Spike Added 1.00

Spike

Added

1.00

MSD MSD Result Qualifier 0.9929

Unit ug/L

Unit

ug/L

%Rec 99

%Rec RPD Limits 80 - 120

Limit 20 0

RPD

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.3/36500

Job ID: 680-246795-1

Metals

Prep Batch: 823551

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-246795-1	AF90598	Total/NA	GW	7470A	
680-246795-2	AF90605	Total/NA	GW	7470A	
680-246795-3	AF90606	Total/NA	GW	7470A	
680-246795-4	AF90604	Total/NA	GW	7470A	
680-246795-5	AF90596	Total/NA	GW	7470A	
680-246795-6	AF90597	Total/NA	GW	7470A	
680-246795-7	AF90599	Total/NA	GW	7470A	
MB 680-823551/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-823551/2-A	Lab Control Sample	Total/NA	Water	7470A	
400-251111-H-1-C MS	Matrix Spike	Total/NA	Water	7470A	
400-251111-H-1-D MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Analysis Batch: 823745

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-246795-1	AF90598	Total/NA	GW	7470A	823551
680-246795-2	AF90605	Total/NA	GW	7470A	823551
680-246795-3	AF90606	Total/NA	GW	7470A	823551
680-246795-4	AF90604	Total/NA	GW	7470A	823551
680-246795-5	AF90596	Total/NA	GW	7470A	823551
680-246795-6	AF90597	Total/NA	GW	7470A	823551
680-246795-7	AF90599	Total/NA	GW	7470A	823551
MB 680-823551/1-A	Method Blank	Total/NA	Water	7470A	823551
LCS 680-823551/2-A	Lab Control Sample	Total/NA	Water	7470A	823551
400-251111-H-1-C MS	Matrix Spike	Total/NA	Water	7470A	823551
400-251111-H-1-D MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	823551

2

3

4

5

-

8

10

11

10

Job ID: 680-246795-1

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.08.G01.3/36500

Client Sample ID: AF90598 Lab Sample ID: 680-246795-1 Date Collected: 02/08/24 14:39

Matrix: GW

Date Received: 02/15/24 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			823551	DW	EET SAV	02/20/24 10:58
Total/NA	Analysis	7470A		1	823745	DW	EET SAV	02/20/24 16:32

Client Sample ID: AF90605 Lab Sample ID: 680-246795-2

Date Collected: 02/07/24 10:07 Matrix: GW

Date Received: 02/15/24 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			823551	DW	EET SAV	02/20/24 10:58
Total/NA	Analysis	7470A		1	823745	DW	EET SAV	02/20/24 16:35

Client Sample ID: AF90606 Lab Sample ID: 680-246795-3

Matrix: GW

Date Collected: 02/07/24 10:12 Date Received: 02/15/24 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			823551	DW	EET SAV	02/20/24 10:58
Total/NA	Analysis	7470A		1	823745	DW	EET SAV	02/20/24 16:37

Client Sample ID: AF90604 Lab Sample ID: 680-246795-4 Date Collected: 02/07/24 11:12

Date Received: 02/15/24 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			823551	DW	EET SAV	02/20/24 10:58
Total/NA	Analysis	7470A		1	823745	DW	EET SAV	02/20/24 16:40

Client Sample ID: AF90596 Lab Sample ID: 680-246795-5

Date Collected: 02/06/24 10:25 Matrix: GW

Date Received: 02/15/24 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			823551	DW	EET SAV	02/20/24 10:58
Total/NA	Analysis	7470A		1	823745	DW	EET SAV	02/20/24 16:24

Client Sample ID: AF90597 Lab Sample ID: 680-246795-6

Date Collected: 02/06/24 11:19 Matrix: GW

Date Received: 02/15/24 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			823551	DW	EET SAV	02/20/24 10:58
Total/NA	Analysis	7470A		1	823745	DW	EET SAV	02/20/24 16:51

Eurofins Savannah

Matrix: GW

Lab Chronicle

Client: South Carolina Public Service Authority
Project/Site: 125915/JM02.08.G01.3/36500

Lab Sample ID: 680-246795-7

Matrix: GW

Job ID: 680-246795-1

Client Sample ID: AF90599 Date Collected: 02/06/24 12:45

Date Received: 02/15/24 10:30

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			823551	DW	EET SAV	02/20/24 10:58
Total/NA	Analysis	7470A		1	823745	DW	EET SAV	02/20/24 16:53

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

3

5

9

11

12

13

Customer Email/Report Recipient:

Project/Task/Unit #: **Date Results Needed by:**

Rerun request for any flagged QC

LINDA . MILLIAMS @santeecooper.com

125915 / JM 02.08. G81.3 / 36500

(Yes) No

Analysis Group

	rorks ID # rnal use	Sample Location/ Description	Collection Date	Collection Time	Sample Collector	Total # of containers	Bottle type: (Glass-G/Plastic-P)	Grab (G) or Composite (C)	Matrix(see below)	Preservative (see below)	Comments Method # Reporting limit Misc. sample info Any other notes	He	
AFS	10598	WAP-3	2/8/24	1439	MJK	l	P	G	GW	2	7470 RL=0.2 Mg/L	×	
AF	10605	WAP-10	2/7/24	1067	1			1	1	1		1	1
1	06	WAP-16 DUP		1012									1
1	04	WAP-9		1112	1								1
AF7	0596	WAP-2	2/6/24	1025	MIK							11	1
1	97	WAP-2R		1119	1							1	
1	99	WAP-4	1	1245	1		Ī	Ī	Ī	1		1	
									680-2	46795	Chain of Custody		

Relinquished by:	Employee#	Date	Time	Received by:	Employee #	Date	Time	Sample Receiving (Internal Use On TEMP (°C): Initial
Slevy	35594	2/14/24	1000					
Relinquished by:	Employee#	Date	Time	Received by:	Employee#	Date	Time	Correct pH: Yes No
100000000000000000000000000000000000000				delegay	1			Preservative Lot#:
Relinquished by:	Employee#	Date	Time	Received by:	Employee #	Date	Time	14.4114.8
				1. Mus		2/15/21	1030	Date/Time/Init for preservative:
CANDA	ATC (all)				The second			THE RESERVE OF THE PARTY OF THE

	LJ IVALJ A I	(6111)	Nutrients	MISC.	Gypsum	Loai	Flyash	OII
□ Ag	□ Cu	D Sb	ПТОС	DBTEX	□ Wallboard	Ultimate		Trans. Oil Oual.
	□ Fe	□ Se	■ DOC	□ Naphthalene	Gypsum(all	□ % Moisture	□ Ammonia □ LOI	10 Moisture
□ As	ПK	□ Sn	□ ТР/ТРО4	ПТНМ/НАА	below)	□ Ash	□ % Carbon	Color Color
□В	DLi	□ Sr	□ NH3-N	□ VOC □ Oil & Grease	D AIM D TOC	O Sulfur	□ Mineral	Acidity Dielectric Strength
□ Ba	□Mg	□ Ti		☐ E. Coli ☐ Total Coliform	① Total metals	D BTUs D Volatile Matter	Analysis ☐ Sieve	Dissolved Gases
□Ве	□Mn	□ TI	□ NO2	□рН	☐ Soluble Metals ☐ Purity (CaSO4)	D CHN	□ % Moisture	Used Oll
□ Ca	□Мо	DV	□ Br □ NO3	☐ Dissolved As ☐ Dissolved Fe	☐ % Moisture ☐ Sulfites	Other Tests:	NIDDEC	Finshpoint Metals in oll
□ Cd	□Na	□ Zn	□ SO4	□ Rad 226	D pH	DHOI	NPDES Oil & Grease	(Au, IIId, III a, Ni, Pb Hg)
□Со	DNi	O Hg		□ Rad 228 □ PCB	O Chlorides D Particle Size	☐ Fineness ☐ Particulate Matter	□As	GTX
□ Cr	□РЬ	□ CrVI			ra Sulfar		DTSS	GOFER

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-246795-1

Login Number: 246795 List Source: Eurofins Savannah

List Number: 1

Creator: Munro, Caroline

Creator: Munro, Caroline		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

1

_

10

11

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority Job ID: 680-246795-1 Project/Site: 125915/JM02.08.G01.3/36500

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-24

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 2/27/2024 12:48:25 PM

JOB DESCRIPTION

125915/JM02.08.G01.1/36500

JOB NUMBER

680-246968-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 2/27/2024 12:48:25 PM

Authorized for release by Jerry Lanier, Project Manager I Jerry.Lanier@et.eurofinsus.com (912)250-0281

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Laboratory Job ID: 680-246968-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	10
QC Sample Results	29
QC Association	30
Chronicle	32
Chain of Custody	36
Receipt Checklists	38
Certification Summary	39

9

10

12

13

Case Narrative

Client: South Carolina Public Service Authority

Project: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1 Eurofins Savannah

Job Narrative 680-246968-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 2/21/2024 10:05 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 14.2°C.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Savannah

Job ID: 680-246968-1

Page 4 of 39 2/27/2024

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-246968-1	AF90642	Water	02/13/24 11:35	02/21/24 10:05
680-246968-2	AF90643	Water	02/13/24 12:41	02/21/24 10:05
680-246968-3	AF90618	Water	02/13/24 13:48	02/21/24 10:05
680-246968-4	AF90619	Water	02/13/24 13:53	02/21/24 10:05
680-246968-5	AF90641	Water	02/12/24 14:05	02/21/24 10:05
680-246968-6	AF90636	Water	02/13/24 10:13	02/21/24 10:05
680-246968-7	AF90638	Water	02/14/24 10:10	02/21/24 10:05
680-246968-8	AF90639	Water	02/14/24 11:05	02/21/24 10:05
680-246968-9	AF90640	Water	02/14/24 11:10	02/21/24 10:05
680-246968-10	AF90635	Water	02/14/24 12:19	02/21/24 10:05
680-246968-11	AF90608	Water	02/14/24 14:04	02/21/24 10:05
680-246968-12	AF90609	Water	02/14/24 14:09	02/21/24 10:05
680-246968-13	AF90630	Water	02/15/24 11:25	02/21/24 10:05
680-246968-14	AF90623	Water	02/15/24 12:20	02/21/24 10:05
680-246968-15	AF90633	Water	02/15/24 14:12	02/21/24 10:05
680-246968-16	AF90625	Water	02/15/24 10:35	02/21/24 10:05
680-246968-17	AF90613	Water	02/15/24 13:31	02/21/24 10:05
680-246968-18	AF90620	Water	02/12/24 12:45	02/21/24 10:05
680-246968-19	AF90624	Water	02/12/24 11:47	02/21/24 10:05

G

4

7

8

9

10

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Method	Method Description	Protocol	Laboratory
7470A	Mercury (CVAA)	SW846	EET SAV
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

2/27/2024

Definitions/Glossary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Qualifiers

B 4	_	4_	1-
IVI	е	ta	IS

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
U	Indicates the analyte was analyzed for but not detected.

Glossary

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)

MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
MPN	Most Probable Number
MQL	Method Quantitation Limi

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present PQL

Practical Quantitation Limit

PRES Presumptive Quality Control QC

Relative Error Ratio (Radiochemistry) RER

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Detection Summary

Detection Gammary	
Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500	Job ID: 680-246968-1
Client Sample ID: AF90642	Lab Sample ID: 680-246968-1
No Detections.	
Client Sample ID: AF90643	Lab Sample ID: 680-246968-2
No Detections.	
Client Sample ID: AF90618	Lab Sample ID: 680-246968-3
No Detections.	
Client Sample ID: AF90619	Lab Sample ID: 680-246968-4
No Detections.	
Client Sample ID: AF90641	Lab Sample ID: 680-246968-5
No Detections.	
Client Sample ID: AF90636	Lab Sample ID: 680-246968-6
No Detections.	
Client Sample ID: AF90638	Lab Sample ID: 680-246968-7
No Detections.	
Client Sample ID: AF90639	Lab Sample ID: 680-246968-8
No Detections.	
Client Sample ID: AF90640	Lab Sample ID: 680-246968-9
No Detections.	
Client Sample ID: AF90635	Lab Sample ID: 680-246968-10
No Detections.	
Client Sample ID: AF90608	Lab Sample ID: 680-246968-11
No Detections.	
Client Sample ID: AF90609	Lab Sample ID: 680-246968-12
No Detections.	
Client Sample ID: AF90630	Lab Sample ID: 680-246968-13
No Detections.	
Client Sample ID: AF90623	Lab Sample ID: 680-246968-14
No Detections.	
Client Sample ID: AF90633	Lab Sample ID: 680-246968-15
No Detections.	
Client Sample ID: AF90625	Lab Sample ID: 680-246968-16
No Detections.	

This Detection Summary does not include radiochemical test results.

Eurofins Savannah

Detection Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Lab Sample ID: 680-246968-1	7
Lab Sample ID: 680-246968-18	R

Δ

No Detections.

No Detections.

18

Client Sample ID: AF90624

Client Sample ID: AF90613

Client Sample ID: AF90620

Lab Sample ID: 680-246968-19

0

No Detections.

Q

9

11

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Client Sample ID: AF90642 Lab Sample ID: 680-246968-1 Date Collected: 02/13/24 11:35

Matrix: Water

Date Received: 02/21/24 10:05

Method: SW846 7470A - Mercury (C	VAA)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		02/22/24 15:20	02/23/24 17:33	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Client Sample ID: AF90643 Lab Sample ID: 680-246968-2

Matrix: Water

Date Collected: 02/13/24 12:41 Date Received: 02/21/24 10:05

Method: SW846 7470A - Mercury (CVAA)

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Mercury
 0.200
 U
 0.200
 ug/L
 02/22/24 15:20
 02/23/24 17:39
 1

2

Δ

9

44

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Client Sample ID: AF90618 Lab Sample ID: 680-246968-3 Date Collected: 02/13/24 13:48

Matrix: Water

Date Received: 02/21/24 10:05

Method: SW846 7470A - Mercury (CVAA) RL Result Qualifier MDL Unit Prepared

Dil Fac Analyzed Mercury 0.200 U 0.200 ug/L 02/22/24 15:20 02/23/24 17:42

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Lab Sample ID: 680-246968-4

Date Collected: 02/13/24 13:53 Date Received: 02/21/24 10:05

Client Sample ID: AF90619

Matrix: Water

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ua/L		02/22/24 15:20	02/23/24 17:44	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Lab Sample ID: 680-246968-5

15 Campic 15: 000-2-0000-0

Matrix: Water

Client Sample ID: AF90641 Date Collected: 02/12/24 14:05

Date Received: 02/21/24 10:05

Method: SW846 7470A - Mercury (CVAA)

	3 ()									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Mercury	0.200		0.200		ua/l		02/22/24 15:20	02/23/24 17:46	1	

_4

5

6

8

9

11

10

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Lab Sample ID: 680-246968-6

Client Sample ID: AF90636 Date Collected: 02/13/24 10:13

Matrix: Water

Date Received: 02/21/24 10:05

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result	Qualifier	RL	MDL Ur	it	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	П	0.200	110	/I		02/22/24 15:20	02/23/24 17:48	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Lab Sample ID: 680-246968-7 **Client Sample ID: AF90638** Date Collected: 02/14/24 10:10

Matrix: Water

Date Received: 02/21/24 10:05

Method: SW846 7470A - Mercury (CVAA) RL Dil Fac Result Qualifier MDL Unit Prepared Analyzed Mercury 0.200 U 0.200 ug/L 02/22/24 15:20 02/23/24 17:50

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Lab Sample ID: 680-246968-8

Date Collected: 02/14/24 11:05 Date Received: 02/21/24 10:05

Client Sample ID: AF90639

Matrix: Water

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		02	2/22/24 15:20	02/23/24 17:52	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Lab Sample ID: 680-246968-9

Matrix: Water

Client Sample ID: AF90640 Date Collected: 02/14/24 11:10

Date Received: 02/21/24 10:05

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	П	0.200	ua/l		02/22/24 15:20	02/23/24 17:54	1

7

8

9

11

12

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Client Sample ID: AF90635 Lab Sample ID: 680-246968-10 Date Collected: 02/14/24 12:19

Matrix: Water

Dil Fac

Date Received: 02/21/24 10:05

Method: SW846 7470A - Mercury (CVAA) RL Result Qualifier MDL Unit Prepared Analyzed Mercury 0.200 U 0.200 ug/L 02/22/24 15:20 02/23/24 17:56

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Client Sample ID: AF90608 Lab Sample ID: 680-246968-11

Matrix: Water

Date Collected: 02/14/24 14:04 Date Received: 02/21/24 10:05

Method: SW846 7470A - Mercury (CVAA)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Mercury	0.200	U	0.200		ug/L		02/26/24 11:43	02/26/24 17:12	

- 3

5

c

0

10

19

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Client Sample ID: AF90609

Lab Sample ID: 680-246968-12

Matrix: Water

Date Collected: 02/14/24 14:09 Date Received: 02/21/24 10:05

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		02/26/24 11:43	02/26/24 17:18	1

_

5

7

8

40

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Client Sample ID: AF90630

Date Collected: 02/15/24 11:25 Date Received: 02/21/24 10:05 Lab Sample ID: 680-246968-13

Matrix: Water

Method: SW846 7470A - Mercury (CVAA)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	0.200	U	0.200		ug/L		02/26/24 11:43	02/26/24 17:20	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Client Sample ID: AF90623 Lab Sample ID: 680-246968-14

Matrix: Water

Date Collected: 02/15/24 12:20 Date Received: 02/21/24 10:05

Method: SW846 7470A - Mercury (CVAA)

Analyte Result Qualifier RL MDL Unit D Prepared

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Mercury
 0.200
 U
 0.200
 ug/L
 02/26/24 11:43
 02/26/24 17:22
 1

7

8

10

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Client Sample ID: AF90633 Lab Sample ID: 680-246968-15

Matrix: Water

Date Collected: 02/15/24 14:12 Date Received: 02/21/24 10:05

Method: SW846 7470A - Mercury (CVAA)

RL Dil Fac Result Qualifier MDL Unit Prepared Analyzed Mercury 0.200 U 0.200 ug/L 02/26/24 11:43 02/26/24 17:24

Client: South Carolina Public Service Authority

Job ID: 680-246968-1 Project/Site: 125915/JM02.08.G01.1/36500

Lab Sample ID: 680-246968-16 **Client Sample ID: AF90625**

Date Collected: 02/15/24 10:35 **Matrix: Water**

Date Received: 02/21/24 10:05 Method: SW846 7470A - Mercury (CVAA)

Metriod. 300040 7470A - Mercury (CVAA)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	0.200	U	0.200		ug/L		02/26/24 11:43	02/26/24 17:26	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Project/Site. 125915/JW02.08.G01.1/30500

Lab Sample ID: 680-246968-17

Matrix: Water

Date Collected: 02/15/24 13:31 Date Received: 02/21/24 10:05

Client Sample ID: AF90613

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		02/26/24 11:43	02/26/24 17:32	1

3

4

5

8

10

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Client Sample ID: AF90620 Lab Sample ID: 680-246968-18

Matrix: Water

Date Collected: 02/12/24 12:45 Date Received: 02/21/24 10:05

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ua/L		02/26/24 11:43	02/26/24 17:34	1

6

4

__

6

g

9

10

12

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Client Sample ID: AF90624 Lab Sample ID: 680-246968-19 Date Collected: 02/12/24 11:47

Matrix: Water

Date Received: 02/21/24 10:05

Method: SW846 7470A - Mercury (CVAA) RL Result Qualifier MDL Unit

Dil Fac Prepared Analyzed Mercury 0.200 U 0.200 ug/L 02/26/24 11:43 02/26/24 17:36

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Prep Type: Total/NA

Prep Batch: 824088

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-824088/1-A

Matrix: Water

Analysis Batch: 824292

MB MB

Sample Sample

Result Qualifier

Sample Sample

0.200 UF1

Result Qualifier

MR MR

0.200 U

Sample Sample

0.200 U

Result Qualifier

Result Qualifier

Analyte Result Qualifier

Mercury 0.200 U

RL 0.200 MDL Unit ug/L D

Unit

ug/L

Unit

ug/L

Unit

ug/L

Prepared 02/22/24 15:20

%Rec

%Rec

%Rec

62

58

95

D

Client Sample ID: Lab Control Sample

%Rec

Limits

80 _ 120

%Rec

Limits

80 _ 120

Client Sample ID: Matrix Spike Duplicate

%Rec

Limits

80 - 120

Client Sample ID: Matrix Spike

Client Sample ID: Method Blank

Analyzed Dil Fac 02/23/24 17:00

Lab Sample ID: LCS 680-824088/2-A

Matrix: Water

Analysis Batch: 824292

Analyte

Mercury

Lab Sample ID: 680-246896-E-1-E MS **Matrix: Water**

Analysis Batch: 824292

Analyte

Mercury 0.200 UF1 Lab Sample ID: 680-246896-E-1-F MSD

Matrix: Water

Analysis Batch: 824292

Analyte

Lab Sample ID: MB 680-824551/1-A

Mercury

Matrix: Water

Analysis Batch: 824780

Analyte

Mercury

Lab Sample ID: LCS 680-824551/2-A Matrix: Water

Analysis Batch: 824780

Analyte Mercury

Lab Sample ID: 680-246968-11 MS

Matrix: Water

Analysis Batch: 824780

Mercury Lab Sample ID: 680-246968-11 MSD

Matrix: Water

Analyte

Analysis Batch: 824780

Sample Sample

Analyte Result Qualifier Mercury 0.200

Spike Added Result Qualifier 2.50

Spike

Added

Spike

Added

1.00

Spike

Added

2.50

Spike

Added

1.00

Spike

Added

1 00

1.00

2.384

LCS LCS

MS MS Result Qualifier

0.5773 F1

MSD MSD

0.6176 F1

RL

0 200

Result Qualifier

LCS LCS

MS MS

MSD MSD

Qualifier

Result

0.8121

Result Qualifier

Qualifier

Result

2.120

0.8729

MDL Unit ug/L

Unit

ug/L

Unit

ug/L

Unit

ug/L

D

D

02/26/24 11:43

%Rec

%Rec

%Rec

81

87

85

Prepared

02/26/24 17:08

Analyzed

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 824551

Prep Type: Total/NA

Prep Batch: 824551 %Rec

Limits 80 _ 120

Client Sample ID: AF90608 Prep Type: Total/NA

Prep Batch: 824551 %Rec

Limits 80 _ 120

Client Sample ID: AF90608 Prep Type: Total/NA

Prep Batch: 824551

RPD %Rec Limits **RPD** Limit 80 _ 120

Eurofins Savannah

2/27/2024

Page 29 of 39

RPD

Limit

Dil Fac

20

Client Sample ID: Lab Control Sample

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Metals

Prep Batch: 824088

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-246968-1	AF90642	Total/NA	Water	7470A	
680-246968-2	AF90643	Total/NA	Water	7470A	
680-246968-3	AF90618	Total/NA	Water	7470A	
680-246968-4	AF90619	Total/NA	Water	7470A	
680-246968-5	AF90641	Total/NA	Water	7470A	
680-246968-6	AF90636	Total/NA	Water	7470A	
680-246968-7	AF90638	Total/NA	Water	7470A	
680-246968-8	AF90639	Total/NA	Water	7470A	
680-246968-9	AF90640	Total/NA	Water	7470A	
680-246968-10	AF90635	Total/NA	Water	7470A	
MB 680-824088/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-824088/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-246896-E-1-E MS	Matrix Spike	Total/NA	Water	7470A	
680-246896-E-1-F MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Analysis Batch: 824292

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-246968-1	AF90642	Total/NA	Water	7470A	824088
680-246968-2	AF90643	Total/NA	Water	7470A	824088
680-246968-3	AF90618	Total/NA	Water	7470A	824088
680-246968-4	AF90619	Total/NA	Water	7470A	824088
680-246968-5	AF90641	Total/NA	Water	7470A	824088
680-246968-6	AF90636	Total/NA	Water	7470A	824088
680-246968-7	AF90638	Total/NA	Water	7470A	824088
680-246968-8	AF90639	Total/NA	Water	7470A	824088
680-246968-9	AF90640	Total/NA	Water	7470A	824088
680-246968-10	AF90635	Total/NA	Water	7470A	824088
MB 680-824088/1-A	Method Blank	Total/NA	Water	7470A	824088
LCS 680-824088/2-A	Lab Control Sample	Total/NA	Water	7470A	824088
680-246896-E-1-E MS	Matrix Spike	Total/NA	Water	7470A	824088
680-246896-E-1-F MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	824088

Prep Batch: 824551

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-246968-11	AF90608	Total/NA	Water	7470A	
680-246968-12	AF90609	Total/NA	Water	7470A	
680-246968-13	AF90630	Total/NA	Water	7470A	
680-246968-14	AF90623	Total/NA	Water	7470A	
680-246968-15	AF90633	Total/NA	Water	7470A	
680-246968-16	AF90625	Total/NA	Water	7470A	
680-246968-17	AF90613	Total/NA	Water	7470A	
680-246968-18	AF90620	Total/NA	Water	7470A	
680-246968-19	AF90624	Total/NA	Water	7470A	
MB 680-824551/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-824551/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-246968-11 MS	AF90608	Total/NA	Water	7470A	
680-246968-11 MSD	AF90608	Total/NA	Water	7470A	

Analysis Batch: 824780

_					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-246968-11	AF90608	Total/NA	Water	7470A	824551

Eurofins Savannah

Page 30 of 39

5

77

0

10

11

16

12

- 0 1

QC Association Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Metals (Continued)

Analysis Batch: 824780 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-246968-12	AF90609	Total/NA	Water	7470A	824551
680-246968-13	AF90630	Total/NA	Water	7470A	824551
680-246968-14	AF90623	Total/NA	Water	7470A	824551
680-246968-15	AF90633	Total/NA	Water	7470A	824551
680-246968-16	AF90625	Total/NA	Water	7470A	824551
680-246968-17	AF90613	Total/NA	Water	7470A	824551
680-246968-18	AF90620	Total/NA	Water	7470A	824551
680-246968-19	AF90624	Total/NA	Water	7470A	824551
MB 680-824551/1-A	Method Blank	Total/NA	Water	7470A	824551
LCS 680-824551/2-A	Lab Control Sample	Total/NA	Water	7470A	824551
680-246968-11 MS	AF90608	Total/NA	Water	7470A	824551
680-246968-11 MSD	AF90608	Total/NA	Water	7470A	824551

2

3

4

5

KA.

10

772

12

13

Job ID: 680-246968-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Client Sample ID: AF90642

Date Collected: 02/13/24 11:35 Date Received: 02/21/24 10:05

Date Received: 02/21/24 10:05

Lab Sample ID: 680-246968-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			824088	DW	EET SAV	02/22/24 15:20
Total/NA	Analysis	7470A		1	824292	DW	EET SAV	02/23/24 17:33

Client Sample ID: AF90643 Lab Sample ID: 680-246968-2 Date Collected: 02/13/24 12:41

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			824088	DW	EET SAV	02/22/24 15:20
Total/NA	Analysis	7470A		1	824292	DW	EET SAV	02/23/24 17:39

Client Sample ID: AF90618 Lab Sample ID: 680-246968-3

Date Collected: 02/13/24 13:48 **Matrix: Water** Date Received: 02/21/24 10:05

Batch Batch Dilution Batch Prepared Method **Prep Type** Type Run Factor Number Analyst Lab or Analyzed Total/NA 7470A 824088 EET SAV 02/22/24 15:20 Prep Total/NA 02/23/24 17:42 7470A 824292 DW **EET SAV** Analysis 1

Client Sample ID: AF90619 Lab Sample ID: 680-246968-4

Matrix: Water

Batch Batch **Dilution** Batch **Prepared Prep Type** Type Method Run Factor **Number Analyst** Lab or Analyzed Total/NA Prep 7470A 824088 DW **EET SAV** 02/22/24 15:20

1 Client Sample ID: AF90641 Lab Sample ID: 680-246968-5

Date Collected: 02/12/24 14:05

824292 DW

EET SAV

02/23/24 17:44

Date Received: 02/21/24 10:05

Analysis

7470A

Total/NA

Date Collected: 02/13/24 13:53

Date Received: 02/21/24 10:05

	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Prep	7470A			824088	DW	EET SAV	02/22/24 15:20	
Total/NA	Analysis	7470A		1	824292	DW	EET SAV	02/23/24 17:46	

Client Sample ID: AF90636 Lab Sample ID: 680-246968-6

Date Collected: 02/13/24 10:13 **Matrix: Water**

Date Received: 02/21/24 10:05

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			824088	DW	EET SAV	02/22/24 15:20
Total/NA	Analysis	7470A		1	824292	DW	EET SAV	02/23/24 17:48

Eurofins Savannah

2/27/2024

Page 32 of 39

Matrix: Water

Job ID: 680-246968-1

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.08.G01.1/36500

Client Sample ID: AF90638

Date Collected: 02/14/24 10:10 Date Received: 02/21/24 10:05 Lab Sample ID: 680-246968-7

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			824088	DW	EET SAV	02/22/24 15:20
Total/NA	Analysis	7470A		1	824292	DW	EET SAV	02/23/24 17:50

Client Sample ID: AF90639 Lab Sample ID: 680-246968-8

Date Collected: 02/14/24 11:05 **Matrix: Water**

Date Received: 02/21/24 10:05

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			824088	DW	EET SAV	02/22/24 15:20
Total/NA	Analysis	7470A		1	824292	DW	EET SAV	02/23/24 17:52

Client Sample ID: AF90640 Lab Sample ID: 680-246968-9

Date Collected: 02/14/24 11:10 **Matrix: Water**

Date Received: 02/21/24 10:05

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			824088	DW	EET SAV	02/22/24 15:20
Total/NA	Analysis	7470A		1	824292	DW	EET SAV	02/23/24 17:54

Client Sample ID: AF90635 Lab Sample ID: 680-246968-10 Date Collected: 02/14/24 12:19

Date Received: 02/21/24 10:05

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			824088	DW	EET SAV	02/22/24 15:20
Total/NA	Analysis	7470A		1	824292	DW	EET SAV	02/23/24 17:56

Client Sample ID: AF90608 Lab Sample ID: 680-246968-11

Date Collected: 02/14/24 14:04 **Matrix: Water**

Date Received: 02/21/24 10:05

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			824551	DW	EET SAV	02/26/24 11:43
Total/NA	Analysis	7470A		1	824780	DW	EET SAV	02/26/24 17:12

Client Sample ID: AF90609 Lab Sample ID: 680-246968-12

Date Collected: 02/14/24 14:09 **Matrix: Water**

Date Received: 02/21/24 10:05

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			824551	DW	EET SAV	02/26/24 11:43
Total/NA	Analysis	7470A		1	824780	DW	EET SAV	02/26/24 17:18

Eurofins Savannah

2/27/2024

Page 33 of 39

Matrix: Water

Job ID: 680-246968-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.08.G01.1/36500

Client Sample ID: AF90630 Lab Sample ID: 680-246968-13 Date Collected: 02/15/24 11:25

Matrix: Water

Date Received: 02/21/24 10:05

		Batch	Batch		Dilution	Batch			Prepared
Pr	ер Туре	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
То	tal/NA	Prep	7470A			824551	DW	EET SAV	02/26/24 11:43
То	tal/NA	Analysis	7470A		1	824780	DW	EET SAV	02/26/24 17:20

Client Sample ID: AF90623 Lab Sample ID: 680-246968-14

Date Collected: 02/15/24 12:20 Matrix: Water

Date Received: 02/21/24 10:05

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			824551	DW	EET SAV	02/26/24 11:43
Total/NA	Analysis	7470A		1	824780	DW	EET SAV	02/26/24 17:22

Client Sample ID: AF90633 Lab Sample ID: 680-246968-15

Date Collected: 02/15/24 14:12 **Matrix: Water**

Date Received: 02/21/24 10:05

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			824551	DW	EET SAV	02/26/24 11:43
Total/NA	Analysis	7470A		1	824780	DW	EET SAV	02/26/24 17:24

Client Sample ID: AF90625 Lab Sample ID: 680-246968-16 **Matrix: Water**

Date Collected: 02/15/24 10:35 Date Received: 02/21/24 10:05

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			824551	DW	EET SAV	02/26/24 11:43
Total/NA	Analysis	7470A		1	824780	DW	EET SAV	02/26/24 17:26

Lab Sample ID: 680-246968-17 Client Sample ID: AF90613

Date Collected: 02/15/24 13:31 **Matrix: Water**

Date Received: 02/21/24 10:05

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			824551	DW	EET SAV	02/26/24 11:43
Total/NA	Analysis	7470A		1	824780	DW	EET SAV	02/26/24 17:32

Client Sample ID: AF90620 Lab Sample ID: 680-246968-18

Date Collected: 02/12/24 12:45 **Matrix: Water**

Date Received: 02/21/24 10:05

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			824551	DW	EET SAV	02/26/24 11:43
Total/NA	Analysis	7470A		1	824780	DW	EET SAV	02/26/24 17:34

Eurofins Savannah

2/27/2024

Lab Chronicle

Client: South Carolina Public Service Authority Job ID: 680-246968-1

Project/Site: 125915/JM02.08.G01.1/36500

Client Sample ID: AF90624 Lab Sample ID: 680-246968-19

Matrix: Water

Date Collected: 02/12/24 11:47 Date Received: 02/21/24 10:05

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			824551	DW	EET SAV	02/26/24 11:43
Total/NA	Analysis	7470A		1	824780	DW	EET SAV	02/26/24 17:36

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

sautee cooper,

Chain of Custody

Santee Cooper
One Riverwood Drive
Moncks Comer, SC 29461
Phone: (843)761-8000 Ext. 5148
Pax: (843)761-4175

Project/Task/Unit #:

Date Results Needed by:

Customer Email/Report Recipient:

ON (29Y)

Rerun request for any flagged QC

125915 JAMOZ. 08. 601.1 36500

_@santeecooper.com

LCWILLIA

Analysis Group

	22T C	iculate Matter	nii T O Part		37	orides liele Sir				□ BCB □ B®Q 578	100		3H 🗆	IND	O Co
	NPDES ORESE	1	DHO				Hd			□ Rad 226	_	OSU	nZ 🗆	BNO	DCA
STATE OF	Sadan	r Tests:	DXE		2	Moistun	Ins ()			□ Dissolve		□ Br	Λ□	oM 🗆	□ Ca
10 60	□ % Moisture	СНИ			(tos	ity (Ca)	m4 C			Hq	7	OND	ITO	uM □	□ B¢
	avsi8 □	Volatile Matter				etam le 12. aldu			molil	D E. Coli		DO	ITO	8M D	□Bg
-	Mimeral Analysis	Sulfur				0	OND		.cssc	D 0il & Gi	N-C	HNO	1S 🗆	!TO	OB
10860	П % Свтроп	daA siatu?					iojaq		V		TPO4	STEEL STREET,	us 🗆	ОК	sy 🗆
	OTO	% Moisture			11	v)mns	Cib			arbidas 🗆	1000	ODD	⇒S □	O Fe	IA 🗆
	sinommA D	imate	in o				odils #	0	-	D BTEX	A	OTO	98 🗆	ПСп	3A []
-	Flvash	Coal	737	53	U	unsd	49		.08	IM	ients	HUN	TALS (all)	□ WE.	
stive:	vreserq tof fini\emiT\e	Date													10100-00-1
		Jime	-		etsQ	8	asyoldn	13	eq pà:	Receiv	9mIT	Date	Employee#	injeped by:	- Relinc
	servative Lot#:	Buur			Date	#	nployee	13	eq pA:	Receiv	amIT.	Date	Employee#	injayed by:	Relinc
	rect pH: Yes No	00	Ol	+	2.62	6		1	1	3	1300	tiz/02/201	116558	har	38
Initial:	ple Receiving (Internal of P. 2 14)	TEN TEN	Acres de la constitución de la c		Date		nployee	. Eu	eq pA:	Receiv	Time	alsd .	Employees	injspeq ph:	Rellind
[v]nO est	I longetall paintened alo	anos	T	-	_	-	Т	-	-	1219	7		NBM-AI-1	32	Т
1 1-11		-		+	1		-	+		0111		and	1 +-14- 7N	o h	+
77. 	6968 Chain of Custod		+	+	+	H		+		SOII			+-1-A-=±M	1 be	+
			+	\mathbb{H}	+			+		olol	+17/H/78	•	E-14-47A	859	0P∃A
			-					-	-						
										1013	t12/21/2		1-14-=17M		WP-TA
				1	1	1		1	Ī	SOHI	45/21/2		MCF-A-5	l+s	10b-17
				T	T	Ī	T	T	T	2521	Ī	•	ING LI-JYM	Ы	Ī
										8481			FI - AAW	81	
				T			1			14171			7-74-17M	દમ	
1	7/8W Z.	0=74 01-10	L	7	em	-5)	d	١	BW	5811	t17/E1/2		MCF-A2-1	zh9	0P7A
春	ofni ə	Method# Reporting li Misc. sampl Any other n	below)	Preservative (see	Matrix(see below)	Grab (G) or Composite (C)	Bottie type: (Glass- G/Plastic-P)	Total # of containers	Sample Collector	Collection Time	Collection Date		Description Sample Location,	(CE	(Interna only)

□ Ct

□ CtVI

O Pb

Chain of Custody

Sentee Cooper My Sentee Cooper Other Strates Cooper My Strates Comer, SC 28461 Phone: (843)761-8000 Ext. 5148 Senter (843)761-8000 Ext. 5148

santee cooper.

Project/Task/Unit #:

Date Results Needed by:

Customer Email/Report Recipient:

Rerun request for any flagged QC

125915 JM02.09.681.1 36500

___@santeecooper.com

LCWILLIA

Analysis Group

			- SSLD			10			mire.	3 2			100000	1000	□ CtVI	Q P D	D Cr
			SAO.	atter	inences Menticulate M		region of		1 100	-		D BCB	10 000000	3-1-	8H 🗆	INO	0 Co
			other Silo O		IOI				1012	100		D Rad 226		OSD	uzo	BNO	DCA
10 (12.3	TRHATA	WE.	SEGEN		her Tests:			Antique of				Dissolve	13	0110	Λ□	OMO	□ Ca
	figer (1)		puntsion % []		D CHN	0				2		HqO	7	OND	ITO	aM 🗆	O Be
			BYSIZ []	Matter	□ Volatile		53				molile	O E. Coli	-	150	iTO	SMO	□ Ba
			stevibite		O Sulfar						28851	0 % 1100	17-07	D AH	1S D	no	OB
	Section 1		Corpora		AsA D			100		-	W	D VOC	todL	CONTROL OF THE PARTY OF THE PAR	us 🗆	ОК	sy 🗆
			Dror	am	reioM % O	1		ALC: NAME OF STREET				D Naphtha	3	OG O	os □	OFc	IAO
			smoranA 🗆		- stamfill	D			ann i te	03		XaTao		OLD -	980	□ Cn	8A D
			FIVEST		Coal	1		The .			SC.	IM	einein	PAN	(IIB) SAA	□ WEI	
		'aanp	Time/init for preserv	/aspen		T		T									
				,	Time		Date		ubjokes	ua Eu	eq p\s:	Receiv	emit	Date	Employees	ıAq pəys	Relinqui
			rvative Lot#:	Prese					nafada		dana	- Inchi	2000	Date	Employees	:Aq paus	unbunay
			et pH: Yes No	Corre	amir.	212	3. [3	-	paloidi	MA .	eq pA:	Manag	1300	15/05/21	thbase		wolfs.
177	-;1	Rilling	7.11:00	LEWI	2001	- +	21.72		pologe	117	sq ph:	read)	S (X)S	16/00/0	- Epsyoloms -	: Aq pays	and the second
	(Aju	use or	e Receiving (Internal of	ldmos	ewit.	-13-	ated .		Savolar	ws 1	गार्न क्षेत्र	danet.	1 south		By mile and		in-ti-a
T													11.51				*
		T				T	T	T	T	T	T	나네	12/21/2		22-44V	24 1	90b- 1∀
		-				T	Ī	ī	T	- 1	T	1245	+2/21/2		81-941	1 07	90b ±∀
	- 1										Ī	Issi	T		A41-4A4	1 81	T
1	-	1				1 1											
					12							5501			NAP-23	1 57	901-17
					7						Ī	SEOI	T		PZ-440		
					7-						Ī					۱ ا	F
											Ī	1412			PS- 44V	A E8	
					7	T		T	T	T	Ī	1720	T	ال	15-9AV	A 823 A 823 A 08	90644
		*	7/6n	Z·o ⇒1;	V OL-IL	T	- T	-	T	T	T	2HI 0771 5711	T	ال	15-9AV	A E&	=

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-246968-1

Login Number: 246968 List Source: Eurofins Savannah

List Number: 1

Creator: Stewart, Rendaisha

Creator: Stewart, Rendaisna		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

4

6

0

46

11

12

- 1

Accreditation/Certification Summary

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.08.G01.1/36500

Job ID: 680-246968-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date
South Carolina	State	98001	06-30-24

Eurofins Savannah

ANALYTICAL REPORT

PREPARED FOR

Attn: Linda Williams
South Carolina Public Service Authority
Santee Cooper
PO BOX 2946101
Moncks Corner, South Carolina 29461-2901

Generated 3/3/2024 10:38:40 AM

JOB DESCRIPTION

125915/JM02.09.G01.1/36500

JOB NUMBER

680-247155-1

Eurofins Savannah 5102 LaRoche Avenue Savannah GA 31404

Eurofins Savannah

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing Southeast, LLC Project Manager.

Authorization

Generated 3/3/2024 10:38:40 AM

Authorized for release by Jerry Lanier, Project Manager I <u>Jerry.Lanier@et.eurofinsus.com</u> (912)250-0281

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Laboratory Job ID: 680-247155-1

Table of Contents

Cover Page	1
Table of Contents	3
Case Narrative	4
Sample Summary	5
Method Summary	6
Definitions	7
Detection Summary	8
Client Sample Results	9
QC Sample Results	21
QC Association	22
Chronicle	23
Chain of Custody	25
Receipt Checklists	27
Cartification Summary	28

Case Narrative

Client: South Carolina Public Service Authority

Project: 125915/JM02.09.G01.1/36500

Job ID: 680-247155-1 Eurofins Savannah

Job Narrative 680-247155-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 2/26/2024 10:39 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 17.0°C.

Metals

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Savannah

Job ID: 680-247155-1

Page 4 of 28 3/3/2024

Sample Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-247155-1

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
680-247155-1	AF90610	Water	02/21/24 10:15	02/26/24 10:39
680-247155-2	AF90631	Water	02/21/24 11:03	02/26/24 10:39
680-247155-3	AF90615	Water	02/20/24 11:13	02/26/24 10:39
680-247155-4	AF90614	Water	02/20/24 13:07	02/26/24 10:39
680-247155-5	AF90617	Water	02/20/24 09:51	02/26/24 10:39
680-247155-6	AF90632	Water	02/20/24 14:21	02/26/24 10:39
680-247155-7	AF90611	Water	02/19/24 14:45	02/26/24 10:39
680-247155-8	AF90612	Water	02/19/24 14:20	02/26/24 10:39
680-247155-9	AF90628	Water	02/19/24 09:44	02/26/24 10:39
680-247155-10	AF90629 Dup	Water	02/19/24 09:49	02/26/24 10:39
680-247155-11	AF90627	Water	02/19/24 11:05	02/26/24 10:39
680-247155-12	AF90626	Water	02/19/24 12:49	02/26/24 10:39

Method Summary

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-247155-1

Method	Method Description	Protocol	Laboratory
7470A	Mercury (CVAA)	SW846	EET SAV
7470A	Preparation, Mercury	SW846	EET SAV

Protocol References:

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

Page 6 of 28 3/3/2024

Definitions/Glossary

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-247155-1

Qualifiers

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
U	Indicates the analyte was analyzed for but not detected.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit

MQL

ML MPN

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Level (Dioxin)

Most Probable Number

Method Quantitation Limit

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Savannah

Page 7 of 28

4

1

7

8

10

13

Detection Summary

Project/Site: 125915/JM02.09.G01.1/36500	30b lD. 000-247 135-1
Client Sample ID: AF90610	Lab Sample ID: 680-247155-1
No Detections.	
Client Sample ID: AF90631	Lab Sample ID: 680-247155-2
No Detections.	
Client Sample ID: AF90615	Lab Sample ID: 680-247155-3
No Detections.	
Client Sample ID: AF90614	Lab Sample ID: 680-247155-4
No Detections.	
Client Sample ID: AF90617	Lab Sample ID: 680-247155-5
No Detections.	
Client Sample ID: AF90632	Lab Sample ID: 680-247155-6
No Detections.	
Client Sample ID: AF90611	Lab Sample ID: 680-247155-7
No Detections.	
Client Sample ID: AF90612	Lab Sample ID: 680-247155-8
No Detections.	
Client Sample ID: AF90628	Lab Sample ID: 680-247155-9
No Detections.	
Client Sample ID: AF90629 Dup	Lab Sample ID: 680-247155-10
No Detections.	
Client Sample ID: AF90627	Lab Sample ID: 680-247155-11
No Detections.	
Client Sample ID: AF90626	Lab Sample ID: 680-247155-12

This Detection Summary does not include radiochemical test results.

No Detections.

Client: South Carolina Public Service Authority

Eurofins Savannah

Job ID: 680-247155-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-247155-1

Lab Sample ID: 680-247155-1 **Client Sample ID: AF90610**

Date Collected: 02/21/24 10:15 Date Received: 02/26/24 10:39

Matrix: Water

Method: SW846 7470A - Mercury (CVAA) RL Dil Fac Result Qualifier MDL Unit Prepared Analyzed Mercury 0.200 U 0.200 ug/L 02/28/24 14:33 02/28/24 19:30

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-247155-1

Lab Sample ID: 680-247155-2 **Client Sample ID: AF90631** Date Collected: 02/21/24 11:03

Matrix: Water

Date Received: 02/26/24 10:39

Method: SW846 7470A - Mercury (CVAA)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	0.200	U	0.200		ug/L		02/28/24 14:33	02/28/24 19:20	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-247155-1

Lab Sample ID: 680-247155-3 **Client Sample ID: AF90615** Date Collected: 02/20/24 11:13

Matrix: Water

Date Received: 02/26/24 10:39

Method: SW846 7470A - Mercury (CVAA)							
	Analyte	Result	Qualifier	RL	MDL U	nit	
	Mercury	0.200	U	0.200	นูยู	J/L	

Analyzed Dil Fac Prepared 02/28/24 14:33 02/28/24 19:37

Client: South Carolina Public Service Authority

Job ID: 680-247155-1

02/28/24 14:33

Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-247155-4 Client Sample ID: AF90614

0.200

ug/L

Matrix: Water

02/28/24 19:22

Date Collected: 02/20/24 13:07 Date Received: 02/26/24 10:39

Mercury

Method: SW846 7470A - Mercury (CVAA) RL Result Qualifier MDL Unit Prepared

0.200 U

Dil Fac Analyzed

Client: South Carolina Public Service Authority

Job ID: 680-247155-1 Project/Site: 125915/JM02.09.G01.1/36500

Lab Sample ID: 680-247155-5 **Client Sample ID: AF90617**

Date Collected: 02/20/24 09:51 Matrix: Water

Date Received: 02/26/24 10:39

Method: SW846 7470A - Mercury (CVAA)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Mercury	0.200	U	0.200		ug/L		02/28/24 14:33	02/28/24 19:10	1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-247155-1

Client Sample ID: AF90632 Lab Sample ID: 680-247155-6

Matrix: Water

Date Collected: 02/20/24 14:21 Date Received: 02/26/24 10:39

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result Quali		MDL Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200 11	0.200	ug/l		02/28/24 14:33	02/28/24 19:14	1

4

5

6

ŏ

10

11

13

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-247155-1

Lab Sample ID: 680-247155-7 Client Sample ID: AF90611

Date Collected: 02/19/24 14:45 Date Received: 02/26/24 10:39

Mercury

Matrix: Water

02/28/24 19:12

02/28/24 14:33

Method: SW846 7470A - Mercury (CVAA) RL Dil Fac Result Qualifier MDL Unit Prepared Analyzed 0.200

ug/L

0.200 U

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-247155-1

Lab Sample ID: 680-247155-8 **Client Sample ID: AF90612** Date Collected: 02/19/24 14:20

Date Received: 02/26/24 10:39

Matrix: Water

Method: SW846 7470A - Mercury (CVAA) RL Dil Fac Result Qualifier MDL Unit Prepared Analyzed Mercury 0.200 U 0.200 ug/L 02/28/24 14:33 02/28/24 19:35

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-247155-1

Lab Sample ID: 680-247155-9 **Client Sample ID: AF90628**

Date Collected: 02/19/24 09:44 Matrix: Water Date Received: 02/26/24 10:39

Method: SW846 7470A - Mercury (CVAA) RL Dil Fac Result Qualifier MDL Unit Prepared Analyzed Mercury 0.200 U 0.200 ug/L 02/28/24 14:33 02/28/24 19:18

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-247155-1

Client Sample ID: AF90629 Dup

Date Received: 02/26/24 10:39

Lab Sample ID: 680-247155-10 Date Collected: 02/19/24 09:49

Matrix: Water

Method: SW846 7470A - Mercury (CVAA)

Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ug/L		02/28/24 14:33	02/28/24 19:32	1

Client Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-247155-1

Lab Sample ID: 680-247155-11

Client Sample ID: AF90627 Date Collected: 02/19/24 11:05

Date Received: 02/26/24 10:39

Matrix: Water

Method: SW846 7470A - Mercury (CVAA)

RL Dil Fac Result Qualifier MDL Unit Prepared Analyzed Mercury 0.200 U 0.200 ug/L 02/28/24 14:33 02/28/24 19:24

Client Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-247155-1

Lab Sample ID: 680-247155-12 **Client Sample ID: AF90626** Date Collected: 02/19/24 12:49

Matrix: Water

Date Received: 02/26/24 10:39

Method: SW846 7470A - Mercury (CVAA)

Analyte	Result	Qualifier	RL	MDL	Unit	D		Prepared	Analyzed	Dil Fac
Mercury	0.200	U	0.200		ua/l		02	2/28/24 14:33	02/28/24 19:16	1

QC Sample Results

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-247155-1

Prep Type: Total/NA **Prep Batch: 825019**

Method: 7470A - Mercury (CVAA)

Lab Sample ID: MB 680-825019/1-A

Matrix: Water

Analysis Batch: 825097

MB MB Analyte

Result Qualifier

0.200 U

RL 0.200 MDL Unit ug/L

Unit

ug/L

Unit

ug/L

Prepared

D

%Rec

%Rec

194

88

02/28/24 14:33

%Rec

Limits

80 _ 120

%Rec

Limits

80 _ 120

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Matrix Spike

Analyzed 02/28/24 18:41

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 825019

Prep Type: Total/NA

Prep Batch: 825019

Prep Type: Total/NA **Prep Batch: 825019**

Lab Sample ID: LCS 680-825019/2-A

Matrix: Water

Mercury

Analysis Batch: 825097

Analyte

Mercury

Lab Sample ID: 680-247070-C-7-F MS **Matrix: Water**

Analysis Batch: 825097

Analyte

Mercury

Lab Sample ID: 680-247070-C-7-G MSD

Matrix: Water

Analysis Batch: 825097

Sample Sample Analyte Result Qualifier 0.200 UF1 Mercury

Sample Sample Spike Result Qualifier 0.200 U F1

Added 1.00

Spike

Added

2.50

Spike

Added

1.00

MSD MSD Result Qualifier 1.991 F1

LCS LCS

MS MS

1.944 F1

Result Qualifier

2.199

Result Qualifier

Unit ug/L %Rec 199

%Rec Limits 80 - 120

RPD Limit 2

Eurofins Savannah

Dil Fac

RPD

QC Association Summary

Client: South Carolina Public Service Authority Job ID: 680-247155-1 Project/Site: 125915/JM02.09.G01.1/36500

Metals

Prep Batch: 825019

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
680-247155-1	AF90610	Total/NA	Water	7470A	
680-247155-2	AF90631	Total/NA	Water	7470A	
680-247155-3	AF90615	Total/NA	Water	7470A	
680-247155-4	AF90614	Total/NA	Water	7470A	
680-247155-5	AF90617	Total/NA	Water	7470A	
680-247155-6	AF90632	Total/NA	Water	7470A	
680-247155-7	AF90611	Total/NA	Water	7470A	
680-247155-8	AF90612	Total/NA	Water	7470A	
680-247155-9	AF90628	Total/NA	Water	7470A	
680-247155-10	AF90629 Dup	Total/NA	Water	7470A	
680-247155-11	AF90627	Total/NA	Water	7470A	
680-247155-12	AF90626	Total/NA	Water	7470A	
MB 680-825019/1-A	Method Blank	Total/NA	Water	7470A	
LCS 680-825019/2-A	Lab Control Sample	Total/NA	Water	7470A	
680-247070-C-7-F MS	Matrix Spike	Total/NA	Water	7470A	
680-247070-C-7-G MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	

Analysis Batch: 825097

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
680-247155-1	AF90610	Total/NA	Water	7470A	825019
680-247155-2	AF90631	Total/NA	Water	7470A	825019
680-247155-3	AF90615	Total/NA	Water	7470A	825019
680-247155-4	AF90614	Total/NA	Water	7470A	825019
680-247155-5	AF90617	Total/NA	Water	7470A	825019
680-247155-6	AF90632	Total/NA	Water	7470A	825019
680-247155-7	AF90611	Total/NA	Water	7470A	825019
680-247155-8	AF90612	Total/NA	Water	7470A	825019
680-247155-9	AF90628	Total/NA	Water	7470A	825019
680-247155-10	AF90629 Dup	Total/NA	Water	7470A	825019
680-247155-11	AF90627	Total/NA	Water	7470A	825019
680-247155-12	AF90626	Total/NA	Water	7470A	825019
MB 680-825019/1-A	Method Blank	Total/NA	Water	7470A	825019
LCS 680-825019/2-A	Lab Control Sample	Total/NA	Water	7470A	825019
680-247070-C-7-F MS	Matrix Spike	Total/NA	Water	7470A	825019
680-247070-C-7-G MSD	Matrix Spike Duplicate	Total/NA	Water	7470A	825019

Job ID: 680-247155-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF90610

Date Collected: 02/21/24 10:15 Date Received: 02/26/24 10:39 Lab Sample ID: 680-247155-1

Matrix: Water

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			825019	RS	EET SAV	02/28/24 14:33
Total/NA	Analysis	7470A		1	825097	BJB	EET SAV	02/28/24 19:30

Client Sample ID: AF90631 Lab Sample ID: 680-247155-2

Date Collected: 02/21/24 11:03 Matrix: Water

Date Received: 02/26/24 10:39

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			825019	RS	EET SAV	02/28/24 14:33
Total/NA	Analysis	7470A		1	825097	BJB	EET SAV	02/28/24 19:20

Client Sample ID: AF90615 Lab Sample ID: 680-247155-3

Date Collected: 02/20/24 11:13 **Matrix: Water**

Date Received: 02/26/24 10:39

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			825019	RS	EET SAV	02/28/24 14:33
Total/NA	Analysis	7470A		1	825097	BJB	EET SAV	02/28/24 19:37

Client Sample ID: AF90614 Lab Sample ID: 680-247155-4

Date Collected: 02/20/24 13:07 Date Received: 02/26/24 10:39

	Batch	Batch		Dilution	Batch			Prepared	
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed	
Total/NA	Prep	7470A			825019	RS	EET SAV	02/28/24 14:33	
Total/NA	Analysis	7470A		1	825097	ВЈВ	EET SAV	02/28/24 19:22	

Client Sample ID: AF90617 Lab Sample ID: 680-247155-5

Date Collected: 02/20/24 09:51 **Matrix: Water**

Date Received: 02/26/24 10:39

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			825019	RS	EET SAV	02/28/24 14:33
Total/NA	Analysis	7470A		1	825097	BJB	EET SAV	02/28/24 19:10

Client Sample ID: AF90632 Lab Sample ID: 680-247155-6

Date Collected: 02/20/24 14:21 **Matrix: Water**

Date Received: 02/26/24 10:39

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			825019	RS	EET SAV	02/28/24 14:33
Total/NA	Analysis	7470A		1	825097	BJB	EET SAV	02/28/24 19:14

Eurofins Savannah

Page 23 of 28

Matrix: Water

Job ID: 680-247155-1

Client: South Carolina Public Service Authority Project/Site: 125915/JM02.09.G01.1/36500

Client Sample ID: AF90611 Lab Sample ID: 680-247155-7 Date Collected: 02/19/24 14:45

Matrix: Water

Date Received: 02/26/24 10:39

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			825019	RS	EET SAV	02/28/24 14:33
Total/NA	Analysis	7470A		1	825097	BJB	EET SAV	02/28/24 19:12

Client Sample ID: AF90612 Lab Sample ID: 680-247155-8

Date Collected: 02/19/24 14:20 Matrix: Water

Date Received: 02/26/24 10:39

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			825019	RS	EET SAV	02/28/24 14:33
Total/NA	Analysis	7470A		1	825097	BJB	EET SAV	02/28/24 19:35

Client Sample ID: AF90628 Lab Sample ID: 680-247155-9

Date Collected: 02/19/24 09:44 **Matrix: Water**

Date Received: 02/26/24 10:39

Batch Batch Dilution Batch **Prepared** Method **Prep Type** Type Run Factor Number Analyst Lab or Analyzed Total/NA 7470A 825019 RS **EET SAV** 02/28/24 14:33 Prep

02/28/24 19:18 Total/NA 7470A 825097 BJB **EET SAV** Analysis 1

Client Sample ID: AF90629 Dup Lab Sample ID: 680-247155-10 Date Collected: 02/19/24 09:49 **Matrix: Water**

Date Received: 02/26/24 10:39

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			825019	RS	EET SAV	02/28/24 14:33
Total/NA	Analysis	7470A		1	825097	BJB	EET SAV	02/28/24 19:32

Client Sample ID: AF90627 Lab Sample ID: 680-247155-11

Date Collected: 02/19/24 11:05 **Matrix: Water**

Date Received: 02/26/24 10:39

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			825019	RS	EET SAV	02/28/24 14:33
Total/NA	Analysis	7470A		1	825097	BJB	EET SAV	02/28/24 19:24

Client Sample ID: AF90626 Lab Sample ID: 680-247155-12

Date Collected: 02/19/24 12:49 **Matrix: Water**

Date Received: 02/26/24 10:39

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	7470A			825019	RS	EET SAV	02/28/24 14:33
Total/NA	Analysis	7470A		1	825097	BJB	EET SAV	02/28/24 19:16

Laboratory References:

EET SAV = Eurofins Savannah, 5102 LaRoche Avenue, Savannah, GA 31404, TEL (912)354-7858

Eurofins Savannah

Page 24 of 28

5

Chain of Custody

santee cooper

Santes Cooper One Riverwood Drive Moneks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Pax: (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LINDA . WILLIAMS @santeecooper.com 125915 / JM02.09. GOI. 1 36500 Yes No Analysis Group Labworks ID# Sample Location/ Comments Matrix(see below) Collection Date Collection Time (Glass Method # (Internal use Description Sample Collecto Total # of contain Preservative (1 below) only) Grab (G) or Composite (C) Reporting limit Bottle type: (G/Plastic-P) Misc. sample info Any other notes WK BM 2 × 2/21/24 6 1 P GW AF90610 WAP-13 1015 T470 RL= 0.2 ug/L WAP -28 31 1103 680-247155 WAP-14C 2/20/24 1113 AF906 15 WAP-14B 1307 14 Chain of AF90617 WAP-16 0951 32 Custody WAP-28R 1421 2/19/24 AF906 11 WAP-14 1415 1 12 WAP-14 DUP 1420 Sample Receiving (Internal Use Only) Relinquished by: Time Time TEMP (°C):_ Initial: SADDOCK Shevy 2/26/24 0306 COURIER 2/26/24 0806 39694 Correct pH: Yes Relinquished by: Employee# Date Time Received by: Employee # Date Time Preservative Lot#: 1039 Hodge 2/26/24 Relinquished by: Employee# Date Received by: Employee # Date Time 1029 Date/Time/Init for preservative: ☐ METALS (all) **Nutrients** MISC. Gypsum Oil Coal Flyash □ Ag □ Cu □ Sb Trem. Oil Qual. □ TOC BTEX Wallboard □ Ultimate □ Ammonia O Al □ Fe □ Se □ Naphthalene %Moisture DDOC Gypsum(all □ % Moisture O LOI D THM/HAA □ As OK O Sn □ TP/TPO4 □ Ash ☐ % Carbon DVOC O ALM Acidity HH3-N □ Sulfur ☐ Mineral DB □ Li □ Sr □ Oil & Grease 1 TOC BTUs Analysis □ E. Coli □ Ba □ Mg O Ti ☐ Total metals ■ C1 ☐ Volatile Matter ☐ Sieve Divaslved Gases ☐ Total Coliform [] Soluble Metals □ Be □ Mn DTI □ NO2 CHN Used Oil □pH □ Purity (CaSO4) ☐ % Moisture O Br □ Dissolved As Other Tests: Flashpoint ☐ % Moisture □ Ca □Мо DV □ NO3 □ Dissolved Fe ☐ XRF Scan Metals in oil **NPDES** (As.Cd.Cr.Ni.Pb □ Cd □ Na □ Zn □ Rad 226 O HGI OpH □ SO4 □ Oil & Grease Hg) ☐ Rad 228 ☐ Fineness Chlorides | □Hg □ Co □Ni DAS □ PCB ☐ Particulate Matter ■ TSS COFER □ Cr □РЬ □ CrVI

Matrix codes: GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section)

Preservative code- 1=<4°C 2=HNO3 3=H2SO4 4-HC1 5=Na2S2O3 6-Other (Specify)

Chain of Custody

Santee Cooper One Riverwood Drive Moncks Comer, SC 29461 Phone: (843)761-8000 Ext. 5148 Fax: (843)761-4175

Customer Email/Report Recipient: Date Results Needed by: Project/Task/Unit #: Rerun request for any flagged QC LINDA-WILLIAMS 125915 / JM02.09.681.1 / 36500 @santeecooper.com Yes No **Analysis Group** Labworks ID # Sample Location/ Comments Matrix(see below) Collection Date Collection Time Total# of containers Glass (Internal use Description Preservative (see below) Collecto only) Reporting limit Grab (G) or Composite (C) Bottle type: (G/Plastic-P) Misc. sample info Sample (Any other notes WJK WAP-26 2 GW × 1 G AF906 28 2/19/24 0944 7470 RL= 0.2 ug/L BM WAP- 26 DUP 0949 29 27 WAP-25 1105 1249 26 WAP - 24 Sample Receiving (Internal Use Only) Relinquished by: Employee# Time Employee# TEMP (°C):__ _ Initial: oda 0806 Slevy 2/26/24 COURIER 2/26/24 35994 0866 Correct pH: Yes No Relinquished by: Employee# Date Time Received by: Employee # Date Time Preservative Lot#: 1039 2/26/24 EHODGE Relinquished by: Employee# Time Employee# Date Date Received by: Time Date/Time/Init for preservative: 1039 ☐ METALS (all) Nutrients MISC. Gypsum Coal Oil Flyash □ Ag □ Cu □ Sb DTOC BTEX Wallboard ☐ Ultimate ☐ Ammonia Trans. Oil Qual. DAI O Fe □ Se DOC □ Naphthalene Gypsum(all □ % Moisture LOI O As OK O Sn □ THM/HAA O TP/TPO4 below) □ Asb □ % Carbon □ VOC O AIM □ NH3-N □ Sulfur DB □ Li □ Sr ☐ Mineral □ Oil & Grease TITOC DF O BTUs Analysis □ E. Coli □ Mg Total metals □ Ba □ Ti ■ Cl □ Volatile Matter □ Sieve ☐ Total Coliform □ Soluble Metals □ Be □ Mn DTI 17 NO2 □pH OCHN □ % Moisture Used Oil ☐ Purity (CaSO4) □ Br ☐ Dissolved As Other Tests: OV □ % Moisture □ Ca □ Mo D NO3 ☐ Dissolved Fe □ XRF Scan □ Sulfites NPDES □ Cd □ Na □ Zn ☐ Rad 226 HGI □ SO4 Hg □ Oil & Grease ☐ Rad 228 □ Chlorides ☐ Fineness □ Hg □ Co □ Ni DAS □ PCB ☐ Particulate Matter ☐ Particle Size □РЬ □ TSS GOFER □ Cr □ CrVI □ Sulfur

Matrix codes: GW-groundwater, DW-drinking water, SW-surface water, WW-waste water, BW-boiler water, L-limestone, Oil-oil, S-Soil, SL-solid, C-coal, G-gypsum, FA-flyash, BA-bottom ash, M-misc (describe in comment section)

Preservative code- 1=<4°C 2=HNO₃ 3=H₂SO₄ 4-HCl 5=Na₂S₂O₃ 6-Other (Specify)

4

6

8

10

12 13

Login Sample Receipt Checklist

Client: South Carolina Public Service Authority

Job Number: 680-247155-1

Login Number: 247155 List Source: Eurofins Savannah

List Number: 1

Creator: Johnson, Corey M

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

3

А

4

_

10

111

13

Accreditation/Certification Summary

Client: South Carolina Public Service Authority

Project/Site: 125915/JM02.09.G01.1/36500

Job ID: 680-247155-1

Laboratory: Eurofins Savannah

The accreditations/certifications listed below are applicable to this report.

Authority	Program	Identification Number	Expiration Date	
South Carolina	State	98001	06-30-24	

.

3

4

9

11

12

Water Well Record Bureau of Water

2600 Bull Street, Columbia, SC 29201-1708; (803) 898-4300

1. WELL OWNER INFORMATION:			7. PERMIT NUMBER:
Name:	15		
(last)	(firs	t)	8. USE:
Address:			☐ Residential ☐ Public Supply ☐ Process
City: State:	Zip:		☐ Irrigation ☐ Air Conditioning ☐ Emergency
City. State.	Ziβ.		☐ Test Well Replacement
Telephone: Work:	Home:		9. WELL DEPTH (completed) Date Started: 5-21-24
2. LOCATION OF WELL: CO	UNTY: Geor	getown	46 Date Completed: 5-22-24
Name: Winyah Generating Stat	ion		10. CASING: ☑ Threaded ☐ Welded
Street Address: 661 Steam Plant	Dr.		Diam.: 6" & 2" Height Above Below
City: Georgetown	Zip: 29440		Type: ▼ PVC □ Galvanized Surface 3 ft.
			☐ Steel ☐ Other Weight — lb./ft.
Latitude: Longitude			O in. to 41 Weight — Ib./ft. Weight — Ib./ft. Drive Shoe? Yes 🖾 No
			0 in. to 41 ft. depth
3. PUBLIC SYSTEM NAME: PU	BLIC SYSTE	M NUMBER:	11. SCREEN:
্চ	VAP-30		Type: PVC Diam.: 2"
4. ABANDONMENT: ☐ Yes 🕱	No		Slot/Gauge:
Give Details Below	140		Set Between: 41 ft. and 46 ft. NOTE: MULTIPLE SCREENS
	1 10	4	ft. and ft. USE SECOND SHEET
Grouted Depth: from f	*Thickness		Sieve Analysis Yes (please enclose) No
Formation Description	of	Bottom of	12. STATIC WATER LEVEL 10 ft. below land surface after 24 hours
Tormation Description	Stratum	Stratum	13. PUMPING LEVEL Below Land Surface.
red silty sand	10	10	ft. after hrs. Pumping G.P.M.
			Pumping Test: ☐ Yes (please enclose) 🏿 No
gray sandy clay	20	30	Yield:
311		:E:E:	14. WATER QUALITY
sand clay and shell	10	40	Chemical Analysis ☐ Yes ☒No Bacterial Analysis ☐ Yes ☒ No
		2000	Please enclose lab results.
sugar sand white gray	6	46	15. ARTIFICIAL FILTER (filter pack) ☑ Yes □ No
			Installed from <u>39</u> ft. to <u>46</u> ft.
			Effective size 2 Uniformity Coefficient
			16. WELL GROUTED?
			□ Neat Cement □ Bentonite ☑ Bentonite/Cement □ Other
			Depth: From 0 ft. to 34 ft.
			17. NEAREST SOURCE OF POSSIBLE CONTAMINATION: ft direction
			Type
			Well Disinfected ☐ Yes ☒ No Type: Amount:
			18. PUMP: Date installed: Not installed 🗵
			Mfr. Name: Model No.:
			H.P Volts Length of drop pipe ft. Capacity gpm
			TYPE: Submersible Jet (shallow) Turbine
			☐ Jet (deep) ☐ Reciprocating ☐ Centrifugal
			19. WELL DRILLER: Scott Hunt, Jr CERT. NO.: 2313
			Address: (Print) Level: A B C D (circle one)
			9088 Northfield Drive
*Indicate Water Bearing Zones			Fort Mill, SC 29707 Telephone No.: (803)548-2180 Fax No.: (803)548-2181
maisate trater bearing 2011es			20. WATER WELL DRILLER'S CERTIFICATION: This well was drilled under
(Use a 2nd sheet if needed)	9		my direction and this report is true to the best of my knowledge and belief.
5. REMARKS:			
Bentonite seal from 34-39'			1 1-01+
			host for
			Signed: Date: 5/27/2024
4 TVD5 W			Well Driller
6. TYPE: ☒ Mud Rotary ☐ Jetted		Bored	If D Level Driller, provide supervising driller's name:
☐ Dug ☐ Air Rot☐ Cable tool ☐ Other☐	ary 🗆 [Driven	Richy Lemire
L Capie tool L Other			